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ABSTRACT

The nuclear industry faces significant challenges in optimizing facility efficiency due
to complex information systems, fragmented data exchange, and often implicit
human factors. To address these challenges, this study proposes an innovative
integrated analytical approach that combines graph theory with the Technology-
Organization-People model for human-system integration. This approach allows the
structuration between the technological, organizational, and human dimensions of
complex socio-technical systems to provide a more comprehensive understanding of
data management strategies. In addition, we introduce a method for extracting and
estimating the cognitive load experienced by the human entities, allowing for the
consideration of intrinsic human factors. A synthetically generated dataset was used
to simulate real-world operations, allowing us to apply the graph theory method called
Betweenness centrality to identify critical nodes providing insight into the underlying
structure of nuclear facility dataflows. Our results demonstrate the effectiveness of
combining graph theory methods with human-centered models to highlight the critical
role of human factors in data management strategies. The results of this study have
significant implications for improving human-centered considerations as well as the
efficiency, reliability, and performance of nuclear facilities throughout their lifecycles.

Keywords: Digital transformation, Data management, Graph theory, Cognitive load integration,
Complex information systems, Nuclear industry

INTRODUCTION

Nuclear power plants have significant advantages in terms of low-carbon
energy production, dispatchable energy source, and essential grid stability
(Vu and Hartley, 2022). However, their complex lifecycle involves various
stakeholders and critical transitions between phases, such as design,
procurement, construction, commissioning, operation, and retirement.
The integration of digital transformation technologies, such as digital
twins, can optimize each phase of the project lifecycle, enabling real-time
data acquisition and analysis on the status of each phase (IAEA, 2015).
This facilitates informed decision-making and enhances overall project
performance, improving time delivery and reducing costs.
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Digital transformation is expected to control budgetary requirements and
construction resources demands in nuclear programs, reducing the levelized
cost of electricity (LCOE) and shortening lead times critical factors in
addressing the urgency of climate change. This will enhance operational
flexibility and scalability, crucial for achieving global decarbonization targets
by 2050 (Hao et al., 2024).

However, efficiently integrating digital technologies into the nuclear
sector presents major challenges due to the complexity of addressing
a heterogeneous supply chain lifecycle. Moreover, managing big data
effectively requires addressing the core dimensions of big data management—
volume, velocity, and variety (Jayakrishna et al., 2016)—which involves
processing extensive, real-time datasets originating from diverse sources
and presented in various formats. To overcome these challenges, an
analytical framework that encompasses both digital data elements and other
entities within the information system is essential for achieving a deeper
understanding of the complex interactions among these components.

This study proposes the application of graph theory and the Technology-
Organization-People (TOP) model, based on the research domain of human
system integration (HSI), to analyze nuclear data flow. The TOP model is a
comprehensive framework that considers the technological, organizational,
and social aspects of complex systems, providing a holistic approach to
understanding interactions within the information system (Jayakrishna et al.,
2016). This methodology has demonstrated efficient depth analysis to get
insight into the complex system information based on a synthetic dataset
simulating the real-life nuclear operations (Salazar et al., 2025).

Yet, real world systems such as in the nuclear industry present
additional challenging elements and added complexity resulting into a multi-
dimensionality of the data flow. Many of them are supported by human
activities which are represented in the end by a cognitive load.

This study, based on synthetic data incorporating the journey of activity-
related data, proposes the integration of the human factor cognitive
load to the workload study performed using betweenness centrality in
Salazar et al. (2025). It then allows to measure the overall system load,
incorporating the structural load and the human cognitive load, represented
as a multidimensional value that considers time pressure and task complexity.

LITERATURE REVIEW

The Complexity of Data Management in the Nuclear Industry

Managing data in the nuclear sector is a complex task due to the
interdependent systems nature of the field (Jayakrishna et al., 2016). The data
generated within a nuclear plant comes from a multitude of interconnected
subsystems, technical units, and organizational units such as engineering
and operations teams. Each of these systems generates disparate types of
data, including real-time sensor data, logs, control signals, and operational
data, among others (Hao et al., 2024). Furthermore, the process of mapping
and managing the interactions, propagation, and impacts of this data on
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other parts of the system can become highly complex due to the significant
dependencies and propagation of data involved (Nath et al., 2020).

Another factor contributing to the complexity of this issue is the nature of
the data, which is characterized by three key attributes: volume, velocity,
and variety (Jayakrishna et al., 2016). Nuclear power plants generate a
substantial quantity of real-time data from sensors and control systems.
They also produce a significant amount of data related to facilities lifecycles,
fuel lifecycles, etc. The processing of this continuous stream of data in an
efficient manner while ensuring accurate lineage tracking will necessitate the
implementation of a meticulous optimization strategy (Nath et al., 2020).
The data may also be presented in a variety of formats, including structured
sensor logs, unstructured maintenance reports, time-series data from control
loops, design change management, or even manual operator inputs.

Furthermore, it is essential to address the issue of fault tolerance and error
propagation, which can result in erroneous data (Vu et al., 2022). Errors in
sensor readings, calculation errors in data processing, or incorrect operator
inputs can propagate through the system, potentially leading to suboptimal
decision-making or safety risks. This complexity underscores the need for a
comprehensive approach to managing data in the nuclear sector.

Graph Theory and Its Applications

A graph theory approach employs a diagrammatic representation of the
entire system, delineating its constituent subsystems and their interactions.
This approach facilitates a comprehensive understanding of the system,
particularly in comparison to other methodologies such as the analytical
hierarchy process, which can prove overwhelming in this context.
Additionally, these diagrammatic representations can be readily transformed
into matrix format, such as an adjacency matrix or incidence matrix
representation (Van Steen, 2010), which can be utilized for mathematical
computations that are not feasible with other diagrammatic representations,
including flowcharts, cause-and-effect diagrams, and so forth (Jayakrishna
et al., 2016). The application of graph theory has already been demonstrated
in the dynamic description of systems, including nuclear systems (Salazar
et al., 2025). Graph theory models have been developed to assess the
performance and interrelationship between the sustainability enablers within
an organization, to identify a set of sustainability enablers and attributes that
impact a manufacturing organization (Jayakrishna et al., 2016).

The application of graph theory-based methods such as the betweenness
centrality has been widely adopted in various fields to analyze complex
networks. Research has demonstrated the effectiveness of these
methods in various contexts, such as point-set correspondence matching
(Carcassoni et al., 2002) and distributed cluster management for dynamic
publish/subscribe systems (Tariq et al., 2012). In addition, studies have
explored the integration of graph theory with machine learning techniques
to improve clustering efficiency (Liu et al., 2015) and scalability. The
use of betweenness centrality measures and clustering coefficients has
also been extended to identify initial seed sets for network coverage
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(Saxena et al., 2023). Collectively, these contributions highlight the
versatility and effectiveness of graph theory-based methods in tackling
complex network analysis and clustering tasks.

Human System Integration Framework

Digital transformation has been accompanied by many technological
advances that provide significant opportunities to improve flexibility,
efficiency, and human well-being, but also increase complexity and the lack
of a comprehensive view of the behavior of autonomous agents.

Human System Integration can be defined as a transdisciplinary field
that combines systems engineering, human factors, ergonomics, information
technology, and sector specific applications such as aerospace, healthcare,
and energy. It focuses on integrating technology, organizations, and people
throughout the entire life cycle of complex sociotechnical systems. Unlike
traditional usability approaches, HIS involves considering human and
organizational factors early in the design and development processes (Boy,
2023).

It is relevant to point out that it has become an essential topic in the
development of digital transformation towards the industry 4.0 and its
projection into Industry 5.0 where people’s roles and responsibilities must be
at the center of sociotechnical organizations (Pacaux-Lemoine and Flemisch,
2021).

Under the HSI approach, the TOPmodel supports design and development
teams in the rationalization of interdependencies between technology,
organizations, and people in which a system is considered as a representation
of a natural or artificial entity.

The cognitive load is a key concept of Human System Integration, for
complex systems investigations and goes toward a physical and cognitive
systemic representation (Human Systems Integration Handbook, NASA,
2021; Guy André Boy et al., 2022). Indeed, Cognitive Load Theory (CLT)
offers a foundational framework for understanding how working memory
constraints affect learning by categorizing load into intrinsic, extraneous,
and germane types (Sweller et al., 2011). Intrinsic load relates to task
complexity, extraneous to instructional design inefficiencies, and germane to
schema development. Therefore, it proposes an approach to model different
dimensions of cognitive load and an evaluation grid. Mental effort, often
used as a subjective measure of cognitive load, reflects agent’s perceived
task difficulty. Galy et al. (2012) explores that additive interaction between
intrinsic, extraneous and germane cognitive load combining difficulty with
time pressure and alertness. They show the higher the load, the more
important resources are demanded, this high demand resulting in reduced
efficiency and performance, and how mental overload result of such
combination of elements.

Mohammadian et al. (2022), explore the interaction between humans
and technology in control rooms and demonstrated that poor human-
technology interaction resulted in high cognitive demand and mental
workload, underlining how poorly designed systems may affect performance.
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Leppink and Pérez-Fuster (2019) further critique simplistic linear models
of cognitive load, proposing that mental effort, time on task, and agent
certainty interact in complex, non-linear ways. This perspective underscores
the necessity for adaptive working environments that accommodate
individual variability in cognitive capacity and emotional state, aiming to
optimize instructional efficiency and working engagement.

Synthetic Data Generation

The use of real-world data from the nuclear industry is limited by
confidentiality and the need to protect assets. Thus, another part of the
proposed methodology is the use of synthetic data. The latter has received
significant attention in various areas, including healthcare and question
answering corpora. In Abay et al. (2018), a privacy-preserving synthetic
data release method using deep learning was introduced, highlighting the
importance of protecting sensitive information. Also, the generation of
synthetic question-answer corpora was introduced by combining question
generation and answer extraction models, ensuring roundtrip consistency.
In addition, an evaluation of different approaches to generate synthetic
patient data was introduced, including probabilistic models and generative
adversarial neural networks, addressing the challenge of limited availability
of real patient data for research purposes (Goncalves et al., 2020).

Overall, the literature on synthetic data generation showcases the
importance of privacy preservation, utility evaluation, and the development
of innovative methods for generating synthetic data across various domains.

METHODOLOGY

This study adopts a multidisciplinary approach to address the complexities
of data management in the nuclear power plant’s information systems
leveragingmainly synthetic data generation, graph theory andHuman System
Integration (HSI) through the TOPmodel and the integration of the cognitive
load. The methodology is divided into several steps:

Synthetic Data Generation

The first step in our methodology involves generating synthetic data that
accurately reflects the complex interactions within the nuclear facility. This
is achieved through a process that begins with a reduced real-life operational
dataset, which serves as a foundation for extrapolation using the nuclear
oriented Large Language Model (LLM) SPARK (NuclearnAI, 2024). The
LLM model is specifically designed to generate new elements that conform
to the same dataset structure, thereby enriching and expanding the original
dataset.

Following this, expert knowledge is applied to evaluate the various
generated elements, as well as their relationships with one another. This
allows for the creation of a comprehensive and meaningful dataset that
simulates the complex interactions within the nuclear system’s information
environment.
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Data Sources and Data Transformers Identification Based on the TOP
Model

The initial stage of the methodology entails the identification and cataloging
of all data sources and data transformers within the system. This process
is guided by the HSI TOP model, which emphasizes a comprehensive
understanding of the system’s architecture through an analysis of its three
constituent components: Technology (T), Organizational structure (O), and
People (P). A comprehensive examination of the system’s architecture is
conducted to delineate the interactions and dependencies between these
three elements. This permits a holistic view of the interconnections
between technological systems, organizational processes, and human actors.
Technology components are modeled through digital systems and physical
sensors that generate and process data. The organizational structure is
represented by the various departments and teams responsible for data
management and decision-making. Human factors are captured by observing
operator actions and their influence on data generation and flow.

Graph Conversion and Visualization

The input data is converted into a graph that models complex relationships
between different entities. A force-directed layout algorithm (such as Spring
or Fruchterman-Rheingold) is used to visualize the graph in a 2D space, where
nodes represent individual data sources and transformers, and edges indicate
the direction of data flow between them. This graphical representation serves
as a visual backbone for our analysis: where the dependencies lie, and how
changes in one part of the system affect others.

Overall System Load Quantification Using Betweenness Centrality
Measure and Cognitive Load Estimation

To identify critical nodes, considering the human factors, and then
provide insight into the data flow structure, we define the overall system
load quantification integrating two parameters: the graph theory based
betweenness centrality to measure the structure load and an estimation of
the cognitive load, which is explained later.

Betweenness Centrality: This measures the extent to which a node lies
on the shortest paths connecting other nodes and is commonly used to
identify influential or “central” nodes in a network. Here, we interpret
betweenness centrality as a distribution of structural load, reflecting their
relative importance in facilitating information flow and coordination within
the nuclear facility.

cB(u) =
∑
x6=y

∣∣∣S(x,u,y)∣∣∣∣∣∣S(x,y)∣∣∣
where:
- cB (u) is the betweenness centrality of node u
- S(x,y) is the set of shortest paths between two nodes x and y
- S(x,u,y) is the number of those paths that pass through the node u.



Enhancing the Management of Nuclear Information Systems Through Graph 535

A higher betweenness centrality score indicates a greater potential for a
node to control or influence communication and flow within the graph. It
can highlight nodes that serve as crucial intermediaries in a network structure,
potentially identifying bottlenecks in information or data flow.

Cognitive Load Estimation: To estimate the cognitive load experienced by
agents within the facility, we employed a nuanced approach that considers
both task complexity and time pressure. The Cognitive Load (CL) reflects the
perceived difficulty of tasks performed by individuals, which can significantly
impact their performance and decision-making. In this study, we extracted
relevant information from dataflow (graph edges) emanating from people
nodes to estimate CL. This process involved two key categories defined by
nuclear experts:

Task Complexity (TC): We identified four distinct subcategories with the
validation of nuclear experts.

• High-risk keywords (e.g., hazard, critical, failure): 4 points
• Technical keywords (e.g., diagnostics, implementation): 2 points
• Action-related keywords (e.g., monitoring, training): 1 point
• Data type keywords (e.g., sensor data, control signal, safety alerts): scored

on a scale of 1 to 9 points.

These scores are used to quantify the Task Complexity associated with
each task. If no known data type is matched, a default base score of 2 is
applied.

Time Pressure (TP): We also considered time pressure as a critical factor in
cognitive load estimation. Nuclear experts defined three subcategories:

• High urgency (e.g., emergency, failure): 8 points
• Moderate urgency (e.g., scheduling, deadlines): 5 points
• Low urgency (e.g., monitoring, routine): 2 points.

These scores are used to quantify the time pressure associated with each
task. The cognitive load is then estimated using a weighted sum of these two
components:

CL = a× TC + b× TP

Where a is set to 0.7 and b is set to 0.3, giving more relevance to task
complexity because of its impact on cognitive load, as explained in the
literature review section. People nodes with multiple data flows (graph edges)
have a final cognitive value that is the sum of each of them.

At the end, the Overall load system is expressed as:

OSL
(
node

)
= α × BC

(
node

)
norm + β × e

CL(node)
norm

The first element signifies the betweenness centrality value of the node
that has undergone normalization, while the second element denotes the
exponential behavior of the cognitive load associated with people’s activities,
also normalized. α and β are set to 0.5.
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RESULTS

The synthetic data simulates the operations of a nuclear facility by capturing
the intricate interplay between technological systems and human roles.
It represents a complex and highly integrated information environment,
where sensor systems continuously collect data from temperature sensors,
pressure monitors, level gauges, and radiation detectors. This data feeds
into the facility’s control systems, including reactor controllers, cooling unit
managers, and power loop regulators, which coordinate essential processes
to ensure smooth operation.

To maintain the facility’s integrity, an Automated Maintenance System
performs routine tasks efficiently, while a Data Management System
stores, processes, and analyzes the vast data generated. High-Performance
Computing (HPC) clusters are employed to conduct advanced calculations
that support optimization of energy production and resource management.
The facility infrastructure includes critical components such as radiation
monitoring equipment, cooling systems, turbines, generators, backup power
units, and heat exchangers, all of which work in unison to maintain
operational stability.

In emergency scenarios, a robust Emergency Response System is activated.
These teams include Maintenance and Repair units that address equipment
failures, Safety Officers who ensure personnel safety, and Quality Control
Specialists who verify that all repairs meet regulatory standards. The
Project Manager oversees effort coordination and resources across teams.
Supporting this effort, the Radiation Protection Team minimizes exposure
risks using specialized protocols and equipment, while the Emergency
Response Coordinator ensures efficient communication and collaboration
among stakeholders.

Additional specialized roles strengthen operational readiness. The various
specialized roles and teams are detailed in Salazar et al. (2025).

As operations scale, SCADA systems offer real-time monitoring and
control capabilities, while the Supply ChainManagement Unit ensures timely
delivery of critical resources.

Subsequently the data can be formatted in the TOP model as explained in
the methodology part and it can be converted into a graph.

Figure 1 shows the visualization of the graph representing the nuclear
complex system information, highlighting the different TOP elements
interacting. Then, the community detection algorithm and betweenness
centrality analysis are performed.

Figure 2 shows a comparison of overall system load between nodes
with and without cognitive load integration, where the weighting
coefficients α and β are both set to 0.5, indicating equal importance is given
to both betweenness centrality and cognitive load in the analysis. The figure
illustrates distinct load distribution patterns across People, Technology, and
Organization nodes.

Without considering cognitive load (represented by the red bars), the
technology nodes exhibit generally higher load. Among them, the Sensor
System (0.50) and the Control System (0.49) emerge as the most critical
bottlenecks due to their high betweenness centrality.
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Figure 1: Graph visualization of the nuclear complex information system highlighting
the different TOP elements: organizations (green nodes), technology (blue nodes) and
people (red nodes).

However, when cognitive loadmetrics are incorporated (represented by the
blue bars), the overall system load values of People roles increase significantly,
becoming the primary system bottlenecks. Notably, the Quality Control
Specialist, with a load value of 0.68 (1+0.38), surpasses the technological
node Sensor System, becoming the most influential bottleneck in the system.
The Emergency Response Coordinator, with a score of 0.6, is now the new
second highest score.

A consistent and informative pattern involves groups of interconnected
nodes representing Technology, People, and Organization components that
collaborate closely and exhibit similar betweenness centrality values when
cognitive load is not. This structural similarity may misleadingly suggest that
the operational burdens across these domains are comparable.

Moreover, when cognitive load is integrated, people nodes present a sharp
increase in overall system load, while their technological and organizational
counterparts remain unchanged. These reproducible findings illustrate a
widespread phenomenon in which structurally equivalent roles mask the
disproportionate cognitive demands placed on human actors.

This finding highlights the risk of underestimating personnel workload
when relying solely on structural metrics and further emphasizes the
importance of integrating cognitive load considerations to accurately identify
critical human bottlenecks in complex socio-technical systems.
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Figure 2: Comparison of the overall system load values without cognitive load (red
bars) and with cognitive load (blue bars).

CONCLUSION

This study demonstrates the effectiveness of integrating graph theory
methods with human-centered modeling to identify and mitigate bottlenecks
in nuclear facility data management. By combining the Technology-
Organization-People (TOP) model with the graph theory-based betweenness
centrality measure and an estimation of cognitive load, we have developed
a novel approach that quantifies both structural and human factor load,
resulting in a better defined Overall system load.

Our study shows that cognitive load has a strong measurable impact
on the quantification of such bottlenecks. Our results show that the
proposed methodology is an important step in identifying critical nodes that
contribute to structural and human factor bottlenecks in nuclear facility
data management. The Overall system load metric provides valuable insights
into the underlying complexity of nuclear data flows and highlights areas
where improved communication, training, or task optimization can lead to
improved efficiency and safety.
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The implications of this study are significant because they provide a new
perspective on how to address the challenges of nuclear facility management.
By considering both network structural and human factors, our approach
enables decision makers to develop more effective strategies to optimize data
management, reduce cognitive load, and improve overall performance.

In conclusion, this study has demonstrated the potential of integrating
graph theory methods with human-centered models to identify and mitigate
bottlenecks in nuclear facility data management. The proposed methodology
offers a novel approach that combines quantitative and qualitative metrics to
provide a comprehensive understanding of complex socio-technical systems.

Perspectives: The use of this method in the nuclear sector, with its
very complex systems, led to the necessity of further method development.
Quantification and integration of cognitive load pushes integration of human
factors to a new level.

To further refine our understanding of system load, subsequent steps
will involve extracting and quantifying additional characteristics of the data
flow, building upon the cognitive load estimation approach. Specifically,
metrics such as completeness, quality, frequency, complexity, and breaks
in digital continuity will be considered to provide a more comprehensive
representation of the final data flow. This enriched understanding will
facilitate more accurate decision-making and optimization in nuclear power
plant operations.

Moreover, context mining techniques will be explored in conjunction with
SPARKLLM to enhance synthetic data generation capabilities, enablingmore
realistic simulation scenarios.

Additionally, research into nuclear ontologies will be conducted to improve
the TOP model and overall representation of nuclear data, ultimately
contributing to a deeper understanding of system dynamics and performance.
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