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ABSTRACT

Generative Artificial Intelligence (GenAI) is emerging as a transformative tool
in industrial design, offering novel pathways to optimize functionality, resource
efficiency, and sustainability. This paper explores the application of generative AI
in 2D layout optimization through the development and evaluation of a specialized
tool: the Eco-Storage Architect. Eco-Storage Architect leverages a Conditional
Tabular GAN (ctGAN) to generate optimized layout configurations that not only
enhance spatial efficiency and accessibility but also integrate sustainability constraints
from the outset. By embedding eco indicators—such as energy efficiency and
resource optimization—directly into the generation process, the model ensures that
environmental performance is a core driver of design outcomes. The tool is evaluated
on a dedicated dataset, with results demonstrating the feasibility of integrating
generative AI into early stages of the industrial design process. Quantitative and
qualitative assessments highlight gains not only in layout efficiency but also in key
sustainability indicators. This work showcases how generative models can drive more
adaptive, sustainable, and intelligent design practices in industrial contexts, and
proposes a path forward toward AI-driven optimization in facility planning aligned
with circular economy principles.
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INTRODUCTION

The convergence of Artificial Intelligence (AI) and design is reshaping how
in-dustrial systems address complexity, performance, and sustainability. In
particu-lar, generative AI has emerged as a transformative tool in industrial
design, offer-ing novel capabilities to automate and optimize the creation
of layouts, compo-nents, and product forms, along with new opportunities
for customization (Shafiee, 2025). By learning from high-dimensional data
distributions, generative models can create new, constraint-compliant content
(Goodfellow et al., 2020). In industrial contexts, their integration into design
workflows leads to faster development cycles and more informed decision-
making, while reducing the time and material costs traditionally associated
with manual design iterations (Shafiee, 2025).

© 2025. Published by AHFE Open Access. All rights reserved. 67

https://doi.org/10.54941/ahfe1006700


68 Troncoso et al.

The need for sustainable industrial design has become a central focus of
re-search and innovation in recent years, playing a pivotal role in guiding
the transi-tion toward more resource-efficient and circular manufacturing
systems. Current efforts aim to reduce material usage, minimize energy
consumption, and embed circularity principles throughout the value chain
(Kirchherr, Reike & Hekkert, 2017). Generative models, when aligned with
sustainability-driven design indicators, can actively support these objectives
by enabling early-stage estimation of eco-KPIs, contributing to im-proved
efficiency, circularity, and adaptability in manufacturing environments.

This paper presents a generative AI-based approach to sustainable
industrial layout design through the development of Eco-Storage Architect
(Figure 1). The tool employs a Conditional Tabular GAN (ctGAN) to
generate optimized 2D warehouse configurations, focusing on the spatial
arrangement of aisles and stacker cranes to maximize space utilization,
improve process accessibility, and reduce resource inefficiencies. By learning
from existing layout data and synthesizing new, high-performing alternatives,
Eco-Storage Architect supports data-driven decision-making in the early
stages of facility planning. Its integration of environmental performance
metrics into the design process reflects a broader goal: aligning industrial
layout optimization with sustainability and circular economy principles.

The remainder of this paper is structured as follows. Section 2 presents
the related work on generative AI for design. Section 3 describes the
methodologies and technical details of the proposed tools. Section 4
includes experimental setup and evaluation results. Section 5 discusses the
implications for industrial practice and sustainable design. Finally, Section 6
outlines future research directions and concludes the work.

Figure 1: Schematic of the eco-storage architect framework: from site-specific input to
AI-driven layout generation and eco-efficiency evaluation.

RELATED WORK

Generative AI has gained significant attention in recent years for its
capacity to synthesize new and meaningful content in a variety of domains
(Gonzalez-Val & Muinos-Landin, 2020, Gregores Coto et al., 2023). At
the core of many generative models are architectures such as Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs), and
more recently, Transformer-based Large Language Models (LLMs), which
have demonstrated the ability to generate highly structured outputs from
unstructured input data (Goodfellow et al., 2020). These models are
increasingly being employed due to their capacity to explore large spaces that
would be computationally or cognitively impractical to address manually.
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In layout optimization, generative approaches have been explored to
automate the configuration of spatial arrangements in architectural and
factory environments. Early works focused on architectural layout generation
using GAN-based models under functional and topological constraints
(Nauata et al., 2020). More recently, generative design methods have also
been applied to factory layout planning, enabling the development of creative
and efficient configurations that account for complex planning constraints
in industrial settings (Süße & Putz, 2021). Overall, the use of conditional
GANs for applications in architectural layout generation and infrastructure
planning have gained interest in recent years (Wu, Stouffs & Biljecki, 2022;
Aalaei et al., 2023), and GAN-based approaches are starting to be used not
only to generate feasible configurations, but also to explore unconventional
layout alternatives that challenge traditional heuristics.

Despite growing interest in sustainable manufacturing, the integration
of AI-driven design methods with circular economy objectives is still in
its early stages. Within circular economy frameworks, AI has been mainly
applied to tasks such as resource flow tracking, production optimization, and
multi-objective trade-off analysis (Noman et al., 2022). However, relatively
few studies have established a direct connection between generative models
and environmental metrics. Recent literature has highlighted the importance
of embedding sustainability indicators directly into AI systems, proposing
comprehensive frameworks to evaluate environmental, social, and economic
impacts (Rohde et al., 2024).

METHODOLOGY

Overview. The Eco-Storage Architect is a generative design tool developed
to optimize warehouse layout configurations with respect to both technical
efficiency and sustainability criteria. This tool focuses on the spatial
arrangement of aisles and stacker cranes in industrial warehouses. In this
context, a warehouse is structured around two key elements: i) aisles,
which are the longitudinal corridors used for movement and access within
the storage system, and ii) stacker cranes, which are automated machines
that travel along these aisles to store and retrieve materials. The Eco-
Storage Architect targets the optimization of automated warehouses, where
space utilization, accessibility, and efficiency are critical. The layout and
arrangement of aisles and stacker cranes significantly influence storage
capacity, accessibility, and structural requirements. For example, increasing
the number of aisles may improve accessibility at the cost of spatial efficiency.
The Eco-Storage Architect explores these trade-offs by generating multiple
warehouse layout candidates under varying technical and environmental
constraints. It is designed to assist design decision-makers in balancing key
performance indicators (KPIs) against sustainability metrics, including steel
consumption and CO2 footprint by exploiting the use of generative AI.

Generative Modelling and conditional tabular GANs. Generative
modelling (Nareklishvili, Polson & Sokolov, 2024) aims to learn the
underlying data distribution pdata (x) of a dataset and generate new samples
x
′

∼ pmodel (x) that resemble those in the original dataset. Among generative
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approaches, Generative Adversarial Networks (GANs) (Salehi, Chalechale
& Taghizadeh, 2020) have become widely adopted due to their ability to
produce high-quality synthetic data. A standard GAN consists of two neural
networks:

• A generator G (z) that maps a random latent vector z ∼ pz to the data
space.

• A discriminator D (x) that attempts to distinguish between real data x ∼
pdata and synthetic data generated by G (z).

The objective is formulated as a two-player minimax game, where the
generator learns to produce samples that the discriminator cannot reliably
distinguish from real data, thereby approximating the true data distribution.
The equation is shown in Eq. (1).

Min
G

max
D

V (D,G) = Ex∼pdt(x)
[
logD (x)

]
+ Ez∼pz(z)

[
log (1−D (G (z)))

]
(1)

Conditional GANs (cGANs) (Bourou, Mezger & Genovesio, 2024;
Gandhi, Rana & Bhatt, 2025) extend the GAN framework by allowing both
the generator and discriminator to receive additional information c, such
as class labels or target attributes. This enables directed sample generation,
allowing the generation of samples conditioned on user-defined constraints,
which is particularly useful in design optimization tasks. The objective within
this formulation is shown in Eq. (2):

Min
G

max
D

V (D,G) = Ex∼pdt(x)
[
logD (x | c)

]
+

Ez∼pz(z)
[
log (1−D (G (z | c)))

]
(2)

While most GAN applications focus on image or sequential data, industrial
data often takes tabular form, comprising numerical and categorical features.
Conditional Tabular GANs (ctGANs) (Xu et al., 2019) are specialized
architectures designed to handle mixed-type tabular data. In this way, during
training, the ctGAN learns to model the joint distribution p (x|c) , where
x includes layout parameters e.g., number of aisles, while c includes user-
defined indicators such as storage capacity. Once trained, the generator of the
ctGAN can be conditioned on a set of specified indicators, such as storage
capacity or space usage, to generate new design candidates. At inference
time, the generator G (z|c) receives a random latent vector z∼ N (0, I) and
a conditioning vector c -representing the user-defined target indicators- as
inputs. Based on this, it then produces synthetic layout descriptions x that
adhere to the statistical patterns learned during trained.

Evaluation Metrics for Synthetic Data Quality. To assess the quality of
the synthetic warehouse layouts generated by the ctGAN, we employed a
suite of statistical metrics designed for mixed-type tabular data containing
both numerical and boolean features using the Synthetic Data Vault (SDV)
library (SDV Team, 2024). These metrics evaluate the marginal distributions,
pairwise dependencies, and multivariate similarity between real and synthetic
data.
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Global Distribution and Dependency Metrics. Dataset-level scores were
firstly computed to assess how well the ctGAN could capture the
distributional and structural properties of the original dataset.

The Column Shapes Score (CSS) assess how well the marginal
distributions of each individual feature are preserved in the synthetic
dataset. For numerical variables, the Kolmogorov–Smirnov Complement
(KSComplement) is used, which is defined in Eq. (3).

KSComplement (FR,FS) = 1−DKS (FR,FS) (3)

Where FR and FS are the empirical cumulative distribution functions
(CDFs) of the real and synthetic datasets for a given feature, and
DKS (FR,FS) = supx |FR (x)− FS (x)| is the Kolmogorov–Smirnov statistic,
which measures the maximum difference between two CDFs. For categorical
and Boolean variables, the Total Variation Complement (TVComplement) is
applied, defined in Eq. (4).

TVComplement (PR,PS) = 1−
1
2

∑
x

|PR (x)− PS (x)| (4)

Where PR and PS are the probabilities of outcome x in the real and
synthetic datasets, respectively. This corresponds to the complement of the
Total Variation Distance (TVD). The final score is measured as the average
similarity across all columns. A core of 1 means perfect distributional
similarity, whereas low score corresponds to underrepresented values, or
sampling inconsistencies.

The Column Pair Trend Score (CPTS) evaluates how well the synthetic
data replicates the join distribution of each pair of features. For pairs of
numerical variables, the metric is based on the similarity between the Pearson
correlation coefficients (ρ) computed on the real and synthetic data, defined
in Eq. (5).

Similarity = 1−
∣∣ρreal − ρsyn

∣∣ (5)

For categorical and Boolean feature pairs, a contingency table is
constructed, and the TVD is applied between the two joint distributions, as
shown in Eq. (6).

Similarity = 1− TVD (6)

A score near 1 indicates strong agreement in the joint frequency patterns
of the two features. The final Column Pair Trends Score is the average of all
pairwise similarities across all combinations of features, using the appropriate
comparison method based on data type.

The Overall Score (OS) is computed as the arithmetic mean of Column
Shapes and Column Pair Trends.

TheMeanAbsolute CorrelationDifference (MACD) quantifies the average
absolute difference between the correlation matrices of the real and synthetic
data, shown in Eq. (7).
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MACD =
1
d2

∑
i,j

∣∣∣ρreal
ij − ρ

synthetic
ij

∣∣∣ (7)

Lower MACD values indicate better preservation of linear relationships
between features. The squared Maximum Mean Discrepancy (MMD2)
is a kernel-based statistical test that measures the distance between the
multivariate distributions of real and synthetic samples. Using a radial basis
function (RBF) kernel, it captures both first- and higher-order differences
between distributions. Eq. (8) expresses the MMD2 metric.

MMD2 (X,Y) = Ex,x
′
[
k
(
x,x

′
)]
+ Ey, y

′
[
k
(
y, y

′
)]
− 2Ex,y

[
k
(
x, y

)]
(8)

where k (�, �) is a positive-definite kernel function e.g., Gaussian RBF. An
MMD2 value close to 0 implies high similarity between the datasets.
Per-Feature Distributional Metrics. In addition to global evaluation

metrics, per-feature statistical comparisons between the real and synthetic
datasets were conducted to assess how accurately individual feature
distributions were reproduced, including the KS Statistic (described in the
previous section), and the well-known p-value of the KS test and Wasserstein
distance.

Implementation Details. This section describes the dataset used for
training, including input features (e.g., spatial constraints, user needs, eco-
indicators) and target layout variables, as well as the ctGAN configuration
used to generate synthetic layouts.
Dataset. To train the ctGAN, each warehouse layout is encoded as a

structured vector combining design parameters and performance indicators.
The design parameters include: i) the number of aisles, ii) the number of
cranes per aisle, iii) the number of storage levels (height), iv) aisle orientation
(X or Y), v) space usage along each axis, and vi) edge aisle presence. These
variables define the geometric and operational structure of the warehouse.
For each layout configuration, key performance indicators were computed,
including: i) storage capacity, ii) space usage ratio, iii) aspect ratio, iv) rolls
accessibility, v) steel consumption, vi) CO2 footprint, and vii) disassembly
complexity. A synthetic dataset of 20,000 configurations was generated
through randomized sampling within plausible design ranges. Each sample
is labelled with its calculated performance and sustainability indicators,
forming a tabular dataset suitable for training the conditional generative
model. The inputs of the ctGAN, shown in Table 1, define the conditioning
vector c that constrain the layout generation.

Table 1: Inputs of the eco-storage architect.

Indicator Unit Description Required

Available space m2 Total floor area Yes
Aspect ratio - Ratio of width to height of the space Yes
Storage capacity tons Total roll mass that can be stored Optional

Continued
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Table 1: Continued

Indicator Unit Description Required

Space usage % Area efficiency (used vs. available) Optional
Rolls accessibility % Rolls reachable under partial failure Optional
Steel used kg Structural steel required Optional
CO2 footprint Tons Emissions based on material use Optional

To ensure robustness and diversity, the Eco-Storage Architect generates
multiple candidate layouts for each user request, which are evaluated using a
set of pre-defined metrics based on the resulting technical and environmental
indicators of the layouts. The top three candidates that most closely satisfy
user’s input constraints are selected. This process ensures that: i) the
outputs are technically feasible and aligned with user priorities, ii) trade-
offs among conflicting indicators can be easily visualized and compared,
iii) the generative process avoids convergence to local optima, as traditionally
observed in evolutionary or heuristic approaches. The list of outputs is
described in Table 2.

Table 2: Outputs of the eco-storage architect.

Outputs Format Description

Layout .png Visualization of the crane and aisle configuration.
Technical report .csv Report including the design parameters.
KPIs .csv File including the performance indicators.

ctGAN Model Configuration. To generate realistic and constraint-aware
layout configurations, we employed a Conditional Tabular GAN (ctGAN)
from the Synthetic Data Vault (SDV) framework. The generator was
configured with two hidden layers of 64 units each and used ReLU activation
functions with Batch Normalization enabled. The learning rate was set to
0.0002 with a weight decay of 1e-6, and training was carried out over
250 epochs using a batch size of 500. The discriminator comprised a single
hidden layer of 48 units, with identical learning rate and decay settings. The
model applied min–max normalization during preprocessing to ensure stable
convergence and compatibility with mixed data types. This configuration
allowed the ctGAN to capture both structural patterns and conditional
dependencies within the layout dataset effectively.

RESULTS

Figure 2 shows one of the candidate layouts generated by the Eco-Storage
Architect for a warehouse design scenario with fixed available space and
aspect ratio. On the left, the spatial configuration is visually rendered, while
the right presents the associated technical and eco indicators as output
by the tool. The warehouse layout includes three aisles (in black), three
stacker cranes (in red), and three storage areas (in white), with the blue
sections representing the buffer zones. The structured output includes both
technical specifications and sustainability indicators, which are automatically
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computed for the generated design. The CO2 and steel metrics are particularly
useful for sustainability assessments, while the disassembly score and rolls
accessibility relate to maintenance and resilience under failure conditions.

Figure 2: Overview of the eco-storage architect pipeline. From left to right: (1) ctGAN
output, (2) warehouse layout, (3) technical details, and (4) key indicators.

To quantitatively assess the quality of the synthetic data generated by the
Eco-Storage Architect, a set of evaluation metrics were computed using the
SDV library. Table 3 shows the statistical analysis of the generated data with
respect to the original dataset.

Table 3: Global statistical comparison between real and synthetic data using metrics
such as CSC, CPTS, OS, MACD, and MMD2 to evaluate distributional similarity
and pairwise trends.

CSC CPTS OS MACD MMD2

Value 94.52 % 89.64 % 92.08 % 0.0668 0.0002

The results shown in Table 3 demonstrate strong overall fidelity to the
original dataset. The model achieved a Column Shapes Score of 94.52%,
indicating strong alignment between the marginal distributions of individual
features in the real and synthetic datasets. The Column Pair Trends Score
achieved 89.64%, reflecting solid preservation of pairwise relationships
such as correlations and co-occurrence patterns. These two scores combine
to yield an Overall Score of 92.08%, reflecting a high degree of fidelity
across both univariate and bivariate distributional properties. In addition,
the Mean Absolute Correlation Difference (MACD) was 0.0668, showing
that the overall correlation structure is well maintained. Finally, the squared
Maximum Mean Discrepancy (MMD2) was found to be as low as 0.0002,
confirming a high degree of multivariate similarity between real and synthetic
data. Together, these results validate the reliability of the ctGAN model in
generating realistic warehouse layout configurations suitable for design tasks
and sustainability-focused analysis.

In addition to global evaluation metrics, we examined the fidelity
of individual features using the Kolmogorov–Smirnov (KS) statistic,
corresponding p-values, and the Wasserstein distance normalized by the
standard deviation of each real feature, shown in Table 4.
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Table 4: Per-feature evaluation of real vs. synthetic data using the Kolmogorov–
Smirnov statistic, p-value, and Wasserstein distance.

Indicator KS Statistic p-Value Wasserstein/σ

Orientation of Supporting structures 0.0716 0.0000 0.1467
Space Usage Along X-direction 0.0615 0.0000 0.1207
Space Usage Along Y-direction 0.0381 0.0000 0.0751
Levels 0.0267 0.0002 0.0439
N. aisles 0.0494 0.0000 0.0893
N. cranes per aisle 0.0808 0.0000 0.2301
Aisles on First Edge 0.0143 0.1307 0.0290
Aisles on Second Edge 0.0213 0.0048 0.0431
Storage capacity 0.0470 0.0000 0.1040
Rolls Accessibility 0.0702 0.0000 0.1232
Steel used in structure 0.0267 0.0002 0.0634
CO2 footprint 0.0455 0.0000 0.0821

Most features exhibited low KS statistics (below 0.08), indicating a
strong alignment between real and synthetic distributions at the marginal
level. Normalized Wasserstein distances remained below 0.15σ for nearly
all features, further confirming high distributional similarity. Notably, the
variables “Orientation of Supporting Structures”, “Space Usage Along
X-direction”, and “Rolls Accessibility” presented slightly higher divergence
values, though still within acceptable limits. The feature “Number of Cranes
per Aisle” showed the highest Wasserstein distance (0.2301), likely due to its
low cardinality and sparse representation, which are known to be challenging
for generative models in tabular domains. Overall, these results demonstrate
that the ctGAN model performs well not only at a multivariate level but
also in accurately reproducing the statistical properties of key technical and
sustainability indicators individually.

CONCLUSION

The results obtained with Eco-Storage Architect demonstrate the potential
of generative models to enhance early-stage industrial layout design by
balancing operational efficiency with sustainability goals. By leveraging a
Conditional Tabular GAN (ctGAN), the tool is able to explore a high-
dimensional design space and generate feasible warehouse configurations
that satisfy spatial constraints while optimizing for key performance
indicators (KPIs) such as space utilization, material accessibility, and
process flow. Compared to baseline layouts or heuristic-based planning, the
ctGAN-generated configurations exhibit increased layout diversity and better
alignment with eco-efficiency criteria.

One of the most significant contributions of Eco-Storage Architect is
its ability to incorporate sustainability-related metrics—such as energy,
material flow optimization, and space usage efficiency—directly into the
generation process. This enables a shift from reactive evaluation to proactive
generation of sustainable layouts. Furthermore, by integrating domain-
specific constraints, the tool ensures that the generated configurations are not
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only theoretically optimal but also practically deployable within real-world
facility limitations.

Nevertheless, the model’s effectiveness is dependent on the quality and
representativeness of the training data. While synthetic data generation helps
to augment the training set, real-world warehouse datasets with annotated
performance indicators remain limited. Additionally, the current version does
not yet account for dynamic operational factors such as time-based logistics
flows or varying storage demands, which may limit its applicability to static
layout optimization scenarios.

Future enhancements to Eco-Storage Architect will include multi-
objective optimization to balance trade-offs between space, cost, and
sustainability, and dynamic hyperparameter tuning to improve model
adaptability across scenarios. Modelling temporal factors (e.g., fluctuating
demand), incorporating simulation feedback, and adding human-in-the-loop
interaction, will make the tool more robust and usable. Finally, expanding to
other facility types and integrating with digital twins will support real-time,
adaptive layout optimization.
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