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ABSTRACT

Powered exoskeletons aim to reduce walking effort, requiring accurate estimation of
ankle joint torque based on individual gait data. While traditional musculoskeletal
models exist, recent ML/DL methods like LSTM offer improved estimation but demand
rich datasets. Using data from 138 healthy individuals—including EMG, kinematics,
dynamics, walking speed (0.97–1.59 m/s), height (1.68±0.10 m), weight (74±15 kg),
age (21–86), and sex (65M/73F)—we propose an XGBoost-based estimator using only
ankle angle, walking speed, and anthropometric data. Validated on unseen data,
it achieved R2

=0.95±0.001, RMSE=0.115±0.001 Nm/kg (8.1%). Shapley analysis
ranked stride completion, joint position, and speed as key features. The estimator
demonstrates more robust outputs than prior works and is suitable for exoskeleton
control without EMG.
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INTRODUCTION

Exoskeletons are increasingly explored in scientific research as a means
to support humans in tasks that place significant constraints on the body.
Among the exoskeleton solutions on the market exist passive exoskeletons
capable of storing potential energy to be released later during the task, as
exemplified by the exoskeleton from Laevo (Laevo Exoskeletons). There are
also active exoskeletons equipped with actuators that generate assistance on
demand, such as the HAL exoskeleton from CYBERDYNE (CYBERDYNE).
In the case of active exoskeletons, a torque controller is necessary to provide
the appropriate level of assistance to the user’s effort. For this purpose, the
force control loop needs to understand the kinematic, kinetic, and dynamic
aspects of the interaction between the subject, the assistive device, and their
interactions with the environment (Molinaro et al., 2020; Siu et al., 2020;
Bishe et al., 2021; Zhang et al., 2022).

To this end, the aforementioned works demonstrate how various types
of sensors can instrument the device’s user, such as rotary mechanical

© 2025. Published by AHFE Open Access. All rights reserved. 78

https://doi.org/10.54941/ahfe1006701


Machine Learning for User-Dependent Ankle Joint Torque Estimation 79

position sensors, inertial measurement units to infer kinetic data, pressure
sensor-instrumented insoles to infer dynamic data, and even EMG sensors
to estimate task dynamics from muscle contraction data. Regarding the
acquisition of dynamic data, the implementation of mechanical sensors
such as load cells or pressure sensors can sometimes require laborious
calibration and difficult implementation. Similarly, EMG sensors tend to
provide fluctuating information depending on temperature, humidity, or
perspiration and have poor mechanical resistance to wear and repositioning
during use, as explained by (Parri et al., 2017; Bishe et al., 2021).

Therefore, certain dynamic quantities of the user need to be estimated,
such as the torque exerted around a joint during a task. Conventional
joint torque estimation methods employ physical approaches based on
musculoskeletal models (Winter, 2009). These models remain a reference
in many situations when the model is correctly calibrated to the studied
subject and provided with sufficient data. However, some tasks require
models with complex interactions that are not easily modeled to provide
accurate joint torque estimates. Statistical and machine learning approaches
have been introduced to address the limitations of musculoskeletal models,
particularly for tasks involving nonlinear and complex user–environment
interactions. Deep learning architectures such as Long-Short Term Memory
(LSTM)(Moreira et al., 2021; Zhang et al., 2022), Convolutional Neural
Networks (CNN)(Wang et al., 2023), or Feed Forward Neural Networks
(FFNN) (Mundt et al., 2020; Zhang et al., 2021) have shown promising
results in joint torque estimation. However, these models require large,
diverse datasets and well-instrumented experimental setups, which makes
their implementation time-consuming and costly.

When studying gait, especially at the ankle joint, the nonlinear
relationship between kinematics and joint torque is amplified by inter-
individual differences in morphology and walking speed (Frigo, Crenna
and Jensen, 1996; Horst et al., 2019; Van Criekinge et al., 2023). In this
context, the recent studies of (Molinaro et al., 2020; Wang et al., 2020;
Bhakta et al., 2021), have explored the use of tree-based regression
methods such as XGBoost to estimate joint torques from reduced sensor
configurations. XGBoost combines strong predictive performance with
compatibility for post hoc interpretability using tools such as Shapley values.
These properties make the model suitable for embedded applications and for
learning from a limited number of subjects. The present work investigates
the use of XGBoost to estimate ankle joint torque based on mechanical
sensors, average walking speed, and anthropometric characteristics—without
relying on EMG signals, in order to simplify hardware integration inwearable
systems.

METHODS

Dataset

This work relied on a 138-able-bodied gait dataset from (Van Criekinge et al.,
2023). One can go over the complete data acquisition protocol in the original
article for further details. The data acquisition protocol involved recording
each subject’s weight, height, leg length, age, and gender. Participants were
instructed to walk at their spontaneous speed onto an instrumented pathway
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with force plates. Gait data was captured with a Vicon camera system once
the usual walking speed was achieved, with at least 6 recordings, half starting
with the right foot contacting force plates. The gait data were processed in
Vicon Nexus software for automatic gait event labeling and joint kinematics
and kinetics computation using a dynamic model adjusted to each subject’s
dimensions. Table 1 below shows the statistical distribution of the dataset
subject pool.

Table 1: Characteristics of Van Criekinge et al. dataset (138 able-bodied adults).

Age (Years) Gender
(Male/Female)

Body Mass
(kg)

Height (m) Body Mass
Index

Leg Length
(m)

Mean (SD) 51 (20) 65/73 74 (15) 1.684 (0.103) 26 (4) 0.899 (0.061)
Min - Max 21 – 86 - 48 – 157 1.420 – 1.920 18 – 47 0.660 – 1.070

Data Pre-Processing

The database includes the following features for each subject: subject ID,
age, gender, weight, height, average leg length, average walking speed, ankle
position, and ankle torque normalized by weight over time. Additionally, a
value ranging from 0 to 1 was added to each row, representing the percentage
of gait cycle completion to maintain the history during training. Subject IDs
are sorted from the oldest subject to the younger one. A visualization of
the data features was made to assess the feature distribution across subjects.
Figure 1.a displays some of the distribution of the above-mentioned features.
Figure 1.b summarizes all subjects’ gait profiles respectively to the ankle
torque and position mean (SD) values. Both visualizations allowed us to
identify 20 out of 138 subjects as outliers due to their weight, height, leg
length, walking speed, or gait profile being significantly different from the
majority of the data, and these subjects were excluded from the study.
Analysis of the joint torques showed that some recordings contained noise or
force plate recording errors. Specifically, at the end of the foot swing phase,
a torque spike significantly greater than 0.05 Nm/kg could be observed.
To avoid biasing the algorithm’s training, we hypothesized that the desired
estimated torque value between the toe-off event and the next initial contact
should be zero. Therefore, each subject’s data was truncated to 70% of the
gait cycle, slightly beyond the average time at which toe-off occurs across all
subjects, only focusing on the gait stance phase.

Torque Estimator Training and Testing

The algorithm used to estimate joint torque from the aforementioned
joint position, anthropometric data, and gait completion range was based
on the Extreme Gradient Boosting tool XGBoost (Chen and Guestrin,
2016). This machine learning method has demonstrated strong performance
in various regression problems, including joint torque estimations for
knee and hip joints. The subjects’ data pool was randomly divided into
70% training, 17% test, and 13% validation subsets. Subsequently, the
GridSearch function was used to search for the optimal configuration of
XGBoost hyperparameters on the training data based on a given search
grid.
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Figure 1.a: Partial data features distribution visualization. Blue dots display remaining
subjects for this work. Black dots identify subjects as outliers due to abnormal, much
different features values or abnormal gait pattern in Figure 1.b.

Figure 1.b:All 138 subjects ankle positions and normalized torques across stance phase
(here, up to 70% of gait cycle). Average profiles are displayed in full lines, standard
deviation boundaries are displayed in dashed lines. Outlier profiles are displayed in
black lines due to abnormal gait pattern or anthropometric feature values showed in
Figure 1.a.

The grid search parameters are described in Table 2. The result of the
hyperparameter search minimizing the RMSE on the training dataset yields
a number of trees n = 50, a maximum tree depth d = 8, and a learning rate
η = 0.085. The hyperparameters λ = 1 and γ = 0 remained unchanged at
default values.

Table 2: Hyperparameters search grid setup.

Hyperparameter Minimum/Step/Maximum Values

n: Number of regression trees 20/10/150
d: Maximum tree depth 5/1/9
η: Learning Rate 0.04/0.005/0.1

Torque Estimator Evaluation

To evaluate the robustness and generalization of the estimation tool, two
evaluation phases are conducted. The first phase consists of a bootstrap
procedure with 100 iterations on the training dataset in order to estimate a
95% confidence interval for the model predictions and test the robustness of
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the training on a test subset. The second phase corresponds to the validation
step, which evaluates the model’s ability to generalize to unseen subjects
using the validation dataset. Each joint torque prediction is filtered using a
fourth-order zero-delay low-pass Butterworth filter with a cutoff frequency
of 20 Hz. To assess the forecasting accuracy and temporal coherence of the
model, the RMSE, the subject weight-normalized nRMSE, the coefficient of
determination (R2 score), and the Dynamic Time Warping (DTW) distance
are computed between the estimated and calculated torques for all test
subjects. The DTW distance assesses the temporal alignment and potential
phase shift between the estimated and reference torque profiles. Since this
unitless metric captures both amplitude and phase discrepancies, values
below the empirically defined threshold of six are interpreted as indicating
limited divergence from the subject’s reference torque. To interpret the
contribution of each input variable to the model’s predictions, the average
Shapley value is computed for each feature across all validation samples.
This index provides a consistent, model-agnostic estimate of the influence of
each variable, by accounting for its marginal effect across all possible feature
combinations.

Finally, the RMSE, nRMSE, and R2 score metrics are compared with those
reported in previous studies involving machine learning or deep learning
models designed to estimate joint torques in healthy subjects. Only studies
conducted under similar walking conditions—specifically, constant-speed
walking on flat ground—are considered for comparison.

RESULTS

The results of the first evaluation phase of the joint torque estimator, using
bootstrapping of the training data and model as described previously, were
displayed in Figure 2. The average estimation for each subject in the test
dataset was shown as a red dashed line, along with the associated 95%
confidence interval. The mean ± SD performance metrics are as follows:
the average RMSE error was 0.13 ± 0.001 Nm/kg. Compared to the torque
data variation in the whole dataset of 0.081 Nm/kg, this RMSE mean value
is of the same order of magnitude. The nRMSE error was 9.29 ± 7.27 %.
The model reaches a coefficient of determination of R2

=0.94± 0.001, which
reflects its ability to explain most of the variance in the reference torque. The
DTW distance has a mean value of 12.25 ±0.791. This result confirms that,
on average, the estimated torque profiles remain temporally consistent with
the reference, although substantial variability is observed across test subjects.
Results of the second evaluation phase conducted on the unknown validation
subjects’ data were displayed in Figure 3, where the performance indices
were slightly better than those obtained previously. The model exhibited
an average RMSE error of 0.115 Nm/kg, an nRMSE error of 8.10%, an
R2 coefficient of 0.951, and an average DTW distance across all subjects
of 16.63 ± 15.03. A quarter of the estimated torques had a DTW distance
below six. The calculation of the average Shapley values for each feature
of the data yields the following values sorted by decreasing values: Stride
Completion: 0.266, Ankle Joint Position: 0.250, Walking Speed: 0.021, Leg
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Length: 0.011, Height: 0.010, BodyMass: 0.009, Age: 0.034, Sex: 0.001. On
one hand, those values allow considering the stride completion, ankle joint
position, and walking speed were the first, second, and fourth most affecting
features from model inputs. This means that high-quality joint position data
as well as computing online the stride completion should be provided to this
estimator once implemented into wearable systems, to output similar quality
subject-tailored estimations. On the other hand, providing the subject sex
has no significant effect on the estimations and should not be considered as
a relevant data feature for further implementation.

Figure 2: Ankle joint torque estimation of test subjects (n = 20). Dashed red lines
display the XGBoost estimations. Blurred red areas represent the confidence interval
(p < 0.05). Blue plain lines display the reference torques computed from inverse
dynamics.
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Figure 3: Ankle joint torque estimation of validation subjects (n= 16). Dashed red lines
display the XGBoost estimation. Blue plain lines display the ground truth computed
torques.

DISCUSSION

The present work aimed at implementing an XGBoost-based ankle joint
torque estimator, to provide an embedded system a subject-tailored joint
torque feedback. The results obtained in this study reinforce those of previous
works on the development of lower limb joint torque estimators. The
metrics used to estimate the performance of this estimator are compared
with other studies presented in Table 3. The average error in ankle joint
torque estimation (RMSE = 0.115 Nm/kg, nRMSE = 8.1%) is in the same
order of magnitude of estimation error values obtained by (Zhang et al.,
2022) (0.14 Nm/kg) and (Molinaro et al., 2020) (0.093 Nm/kg), the latter
of which used the same XGBoost estimation approach. This difference
primarily arises from the nature of the estimated joint torque. Indeed, the
dynamic fluctuation of the hip during walking is less pronounced than that
of the ankle (Frigo, Crenna and Jensen, 1996) and is thus less subject to
intense variations across a given population. Nevertheless, this torque RMSE



Machine Learning for User-Dependent Ankle Joint Torque Estimation 85

value is within the acceptable range of the dataset ankle torque variation
(SD of ankle torque = 0.081 Nm/kg). The notable contribution of this
study lies in the use of an effective regression method on complex data
with a dataset representing a sample of significant size and diversity (see
Table 1) to develop a joint torque estimator personalized to each individual’s
morphology, yielding robust results. In the previously cited studies in Table 3,
the authors attempted to infer models using a few subjects (respectively,
(Zhang et al., 2022): 8 subjects, (Moreira et al., 2021): 13 subjects,
(Molinaro et al., 2020): 5 subjects), which also limits the range of subjects
of different age and morphology. However, the performance achieved by
(Mundt et al., 2020) on a set of 85 subjects is remarkable, but the lack
of specification of the subjects’ anthropomorphic characteristics does not
allow for determining whether these results can be extended to an entire
population.

Beyond the high performance observed in the presented and compared
results, the design of explainable machine learning models remains a priority,
as emphasized by (Horst et al., 2019). Unlike some of the methods
referenced in Table 3, the use of XGBoost offers both competitive predictive
performance and compatibility with robust post hoc interpretability
techniques such as Shapley values, which allow for a detailed analysis
of feature contributions. In this work, Shapley values are computed for
each feature in the dataset. This analysis reveals that walking speed is the
third most impactful variable influencing torque prediction, with a greater
influence than anthropometric features. This observation aligns with the
conclusions of (Moreira et al., 2021) who followed a similar approach, and
echoes earlier findings by (Frigo, Crenna and Jensen, 1996) on the role
of walking speed in ankle torque estimation. Conversely, features such as
age and sex show minimal impact on torque prediction, confirming the
observations made by (Crenna and Frigo, 2011).

While the present study demonstrates performance comparable to recent
works, it is currently limited to level-ground walking data. Previous works
such as those by (Molinaro et al., 2020) and (Zhang et al., 2022) include
several locomotion modes. Notably, (Molinaro et al., 2020) highlighted the
potential of XGBoost in handling multiple locomotion modes without the
need for prior classification—a strategy that contrasts with approaches like
(Wang et al., 2020), which rely on predefined identification. Nevertheless, the
datasets used in those works included fewer participants than those of (Van
Criekinge et al., 2023), allowing this work to present more representative
estimations. The lack of locomotion modes could be addressed with the
suggested data from (Scherpereel et al., 2023) in future works.

Table 3: Metrics and estimation comparison between this work and other previous
joint torque estimation related works.

Authors Dataset
Subjects

Joints and
Estimation Tool

RMSE
(Nm/kg)

nRMSE
(%)

R2

Zhang et al., 2022 8 Hip/Knee/Ankle LSTM 0.14 - -
Moreira et al., 2021 13 Ankle CNN - 0.76 0.94
Mundt et al., 2020 85 Hip/Knee/Ankle FFNN - 7.39 0.994

Continued
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Table 3: Continued

Authors Dataset
Subjects

Joints and
Estimation Tool

RMSE
(Nm/kg)

nRMSE
(%)

R2

Molinaro et al.,
2020

5 Hip XGBoost 0.093 - -

This work 118 Ankle XGBoost 0.115 8.1 0.951

CONCLUSION

This study presents a method for estimating ankle joint torque based on
information obtainable solely from position sensors, as well as the subject’s
anthropomorphic characteristics. The use of a sufficiently large and diverse
gait dataset has enabled the achievement of more generalizable results
than those in recent state-of-the-art studies while demonstrating similar
performance. This XGBoost-based ankle joint torque estimator could be
extended to other joints and ambulatory modes without major algorithmic
modifications, allowing for implementation in embedded systems requiring
joint torque feedbacks such as power assistive devices.
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