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ABSTRACT

This paper presents a structured framework for analyzing the role of intelligent
sensor systems in enabling data-driven and potentially disruptive business models
in manufacturing. Building on a five-level layer model - comprising sensor, machine,
shopfloor, plant, and value chain - the study systematically examines each level
along five analytical dimensions: data, processes, IT systems, interfaces, and
standards. For each level, the current state and expected future developments are
exemplarily assessed through literature analysis and industrial case examples. This
multi-dimensional approach reveals digitalization potentials and integration barriers at
each stage of the value creation process. The findings are then synthesized to explore
cross-level fusion strategies, enabling new forms of vertical and horizontal integration.
The methodology follows the Zachman framework logic, ensuring structured coverage
of each layer and aspect. Real-world use cases–ranging from pay-per-part offerings to
cross-company data spaces–illustrate how sensor-based integration supports novel
business logics such as Equipment-as-a-Service, predictive quality management, or
audit-ready digital twins. The paper contributes to Industry 4.0 discourse by linking
sensor fusion architectures with value creation mechanisms, demonstrating how
technical infrastructures and business models must co-evolve. The proposed model
serves as both a diagnostic tool for digital maturity and a design template for
future-ready industrial service models.

Keywords: Data fusion, Artificial intelligence, Industry 4.0, IIoT, Digital twin, Value chain
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INTRODUCTION AND RESEARCH QUESTIONS

This paper presents a current innovation initiative by a medium-sized
manufacturer specializing in intelligent sensor solutions. The basis is a sensor
system that can be quickly integrated into forming machines such as presses
and measures elastic deformations in the T-slots of the press table and ram.
This sensor technology, which is described in detail in Kurth et al. (2021),
is used to make forming processes more transparent, detect anomalies, or
identify changes in the forming machine.
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As shown in Kurth et al. (2023), this sensor can capture a characteristic
measurement curve for the specific forming process, which is directly
proportional to the forming force and functions as a digital fingerprint of the
respective pressing stroke. The continuous analysis of these curves enables
the detection of subtle variations in machine and tool behavior, such as wear,
misalignments, and changes resulting frommaterial and process fluctuations,
tool wear, or manual interventions. Data processing is structured in two
stages:

• On-Device AI: A resource-efficient artificial intelligence system embedded
within the sensor classifies press cycles, filters anomalies, and extracts
relevant features as part of a sensor data pre-processing.

• Near-Edge AI: Advanced pattern recognition algorithms and predictive
models–deployed on an industrial PC in close proximity to the machine–
perform higher-level analyses, such as estimating remaining tool life,
detecting tool wear, or assessing part quality.

The current application focus is on operational enhancements, including:
Condition monitoring of presses and tools, reduction of unplanned
downtimes, real-time quality assurance of press parts.

Beyond machine-level benefits, the collected sensor data demonstrate
increasing potential for cross-functional value creation. These data can
support activities in production planning, quality management, and supply
chain optimization. This raises strategic questions regarding the economic
utilization of sensor-derived data to drive innovation in adjacent business
functions.

The aim of this work is to systematically examine the role of smart sensor
systems as enablers of data-driven and potentially disruptive business models.
Three key research questions guide this investigation:

• Which structural or digital transformation trends across corporate
functions could be supported by sensor data from press machines within
the following focus areas quality management, production control,
maintenance strategy, product development, and supplier integration?

• How can these functional areas be integrated into a hierarchical model
spanning from sensor, machine, shopfloor, plant to value chain level in
order to follow the objective to contextualize sensor-enabled innovation
along vertical and horizontal dimensions of enterprise integration?

• What types of data-driven business models can be derived from the sensor
data, for examples pay-per-part schemes, predictive quality-as-a-service,
tool-as-a-service offerings, and digital twin implementations for audit
readiness?

This paper contributes to the broader discourse on Industry 4.0
by demonstrating how embedded sensor intelligence and multi-level AI
processing can serve as foundational elements for operational excellence and
novel value creation mechanisms in manufacturing ecosystems.
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METHODOLOGY

This study employs a conceptual-analytical methodology based on a multi-
level layer model for digital integration in manufacturing. The model
comprises five hierarchical levels–sensor, machine, shopfloor, plant, and
value chain – and analyzes each along five key dimensions: data, processes,
IT systems, interfaces, and standards. For every level, both the current
state and anticipated developments are systematically assessed through
structured literature review and analysis of industry practices. This dual-
perspective approach enables the identification of structural barriers and
integration potentials. The results form the foundation for cross-level
synthesis and the conceptualization of integrated, data-driven business
models. The methodology is exploratory and interpretive, aiming to uncover
systemic interdependencies between digital infrastructures and value creation
mechanisms. The model is then applied to multiple industrial examples,
following the Zachman framework logic (Zachman, 2004), in which each
layer and dimension is systematically addressed.

LAYER MODEL FOR DISRUPTIVE BUSINESS MODEL DESIGN

The layer model is mainly derived from the automation pyramid, building
on the ISA-95 standard (see Meudt et al. (2017) and complementary
papers developed by this project), the evolving cloud–edge computing
landscape (Gole et al., 2022; EUCloudEdgeIoT.eu, 2025), and the RAMI
4.0 architecture (Contreras et al., 2017).

Table 1: Five-layer-model for business model design in manufacturing (derived from
ISA-95, RAMI4.0 and the CIS cloud-edge continuum and adapted by the
authors).

Level Data Activities/
Processes

IT Systems Interfaces/
Standards

Sensor • Status quo:
Sensors provide
basic measurement
data; contextual
data rarely used.
• Future: More
sensor raw data
(value + context)
processed locally
and transmitted to
cloud for global
use.

• Status quo:
Sensor setup and
calibration often
manual, causing
downtimes.
• Future:
Self-calibrating
intelligent sensors
reduce manual
intervention.

• Status quo:
Sensors directly
linked to PLCs; no
direct IT
connectivity.
• Future: Sensors
send data directly
to edge/cloud
systems in parallel.

• Status quo:
IO-Link
established but
proprietary
formats prevail.
• Future: OPC UA
with semantic
self-description
enables open,
interoperable
sensor interfaces.

Machine • Status quo:
Machine data
often used locally
with proprietary
protocols.
• Future: OPC UA
companion specs
enable
cross-vendor
machine data
interoperability.

• Status quo:
Maintenance
based on time or
failure events.
• Future:
Predictive
maintenance
minimizes
unplanned
downtimes.

• Status quo:
Proprietary PLCs;
limited remote
diagnostics.
• Future: Digital
twins accompany
machines across
the lifecycle.

• Status quo: Few
common machine
data standards.
• Future: OPC UA
and Plug & Work
allow vendor-
independent
machine
integration.

Continued



Layer Model for the Design of Data-Driven Business Models 21

Table 1: Continued

Level Data Activities/
Processes

IT Systems Interfaces/
Standards

Shopfloor • Status quo:
Production data
analyzed post hoc;
real-time
transparency rare.
• Future:
Real-time analytics
via AI reduces
scrap and adjusts
production in
real-time.

• Status quo:
Machine retooling
requires manual
reconfiguration.
• Future: Plug &
Produce enables
flexible
reconfiguration
without long
downtimes.

• Status quo: MES
systems manage
shopfloor with
limited IT
integration.
• Future:
Cyber-physical
production
systems (CPPS)
with real-time
orchestration.

• Status quo:
Heterogeneous
fieldbus protocols
dominate.
• Future: OPC UA
over TSN enables
real-time, adaptive
shopfloor
communication.

Plant • Status quo: Data
silos between
shopfloor and IT,
OEE optimization
potential
untapped.
• Future: Smart
factory with digital
twin enables agile
simulation-based
production
control.

• Status quo:
Production plans
fixed; customer
involvement rare.
• Future:
Order-driven
integration via
platforms.

• Status quo: ERP
isolated from
real-time
shopfloor data.
• Future: Unified
MOM systems
integrate ERP and
MES with AI
decision support.

• Status quo:
Site-specific
standards
dominate.
• Future:
Reference
architectures
(RAMI 4.0, AAS)
enable cross-site
interoperability.

Value Chain • Status quo: B2B
data exchange
mostly bilateral
(e.g., EDI); limited
data sharing.
• Future:
Federated data
spaces enable
multilateral data
exchange across
the value chain.

• Status quo:
Supply chain
operations
manually
coordinated with
media breaks.
• Future:
Intercompany
collaboration via
shared digital
platforms
improves
responsiveness.

• Status quo:
ERP-based EDI
systems, lacks
secure
infrastructure for
multi-party data
exchange.
• Future:
International Data
Spaces (IDS)
provide secure,
sovereign data
exchange.

• Status quo: Few
digital process
standards across
companies.
• Future: Open
industry standards
and compatibility
drive efficient
value chain
integration.

This layer model enables the identification of digitalization potentials
and structural barriers within and across levels. The resulting insights form
the basis for the subsequent analysis of inter-level integration requirements.
Thus, the model provides a conceptual foundation for the development of
innovative and potentially disruptive business models in the manufacturing
domain.

TYPES OF DATA-DRIVEN BUSINESS MODELS ENABLED BY
SENSOR-BASED INTEGRATION: A LAYERED APPROACH

This section of the paper examines the emergence of data-driven business
models in manufacturing, driven by the progressive integration of sensor
technology across multiple levels of production systems. This analysis is
organized according to a four-layer framework, extending from individual
machine-level integration to cross-organizational value chain coordination.
At each level, the study identifies core characteristics of the associated
business models and presents illustrative use cases to support conceptual
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insights. The investigation deliberately adopts a broad perspective. Although
there are approaches for sensor data-based business models in the field
of forming technology (e.g., Alaluss et al. (2025)), forming technology
is not emphasized separately in this analysis. Instead, the examples have
been selected to demonstrate foundational mechanisms of disruptive, data-
oriented value generation in industrial contexts.

First Fusion Level: Sensor and Machine Layer

Characteristics: The initial integration level focuses on equipping individual
machines with smart sensor systems, resulting in smart product systems
and associated services. The business logic transitions from conventional
product sales to service-centric models, typically based on usage or outcomes.
A common manifestation is “Equipment-as-a-Service” (EaaS), where
manufacturers offer data-driven services such as predictive maintenance and
performance optimization. These offerings are typically monetized via pay-
per-use or pay-per-outcome schemes and are enabled through continuous
monitoring of machine data, often facilitated by industrial IoT platforms.

At this level, the primary data sources include machine-level operational
parameters such as energy consumption, vibration patterns, temperature,
cycle counts, and fault codes. These are fused with control data from
PLCs or embedded systems to generate contextual insights. The fusion
process typically involves local preprocessing (e.g., via edge devices), real-
time transmission via MQTT or OPC UA protocols, and aggregation in
cloud-hosted analytics environments.

Processes supported by this fusion include condition monitoring, failure
prediction, and usage-based service planning. From an IT systems
perspective, relevant components include edge gateways, cloud IoT
platforms, digital twins, and rule-based event engines. Standards such as
ISO 21902 (predictive maintenance) and Asset Administration Shell (AAS)
architectures are increasingly used to structure and harmonize data interfaces
for plug-and-play interoperability between heterogeneous industrial devices.

Use Cases: Mader with its subsidiary LOOXR’s Industrial Air exemplifies
this model through its “Druckluft 4.0” service, wherein the company retains
compressor ownership while customers are charged for actual compressed
air consumption. Integrated sensors collect operational data, which is utilized
for efficiency assessments and predictive maintenance (Martin Köppe, 2024;
Mader GmbH&Co. KG, 2019). Similarly, TRUMPF’s “Pay-per-Part”model
allows customers to pay per manufactured unit rather than owning the
machine. TRUMPF manages programming, monitoring, and maintenance
remotely via sensor and camera infrastructure (TRUMPF 14.10.2020;
TRUMPF 21.09.2022; TRUMPF 20.09.2023).

Second Fusion Level: From Sensor to Shopfloor Layer (Integration
Across Multiple Machines or Production Cells)

Characteristics: At this level, sensor data from multiple machines or
production cells is consolidated and fused to enable systemic optimization
of shopfloor operations. The fusion includes time-series data from machine
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sensors (e.g., vibration, torque, force, temperature), status signals from
programmable logic controllers (PLCs), operational metadata from MES
systems, and contextual production information (e.g., order ID, shift plan,
production and quality protocols). Data is preprocessed at the edge and
transmitted via standardized protocols like OPC UA, MQTT, or REST APIs.

Business models aim to enhance Overall Equipment Effectiveness (OEE),
reduce downtime, and increase throughput by leveraging centralized data
aggregation, advanced analytics, and machine learning models. Supported
processes include predictive maintenance, anomaly detection, bottleneck
identification, production sequencing, and quality prediction.

Key IT systems involved at this level includeMES platforms, industrial IoT
hubs, AI analytics engines, and edge computing infrastructure. Standardized
integration relies on e.g., ISA-95,OPCUACompanion Specifications, and the
Asset Administration Shell (AAS). Semantic interoperability is increasingly
supported through ontologies like eCl@ss or AutomationML. Providers often
act as analytics service vendors, offering subscription-based access (Software-
as-a-Service, SaaS) to tools for real-time monitoring and actionable insights
across entire production lines.

Use Cases: Bosch’s Nexeed platform represents a commercialized internal
solution, now offered externally by Bosch Connected Industry. It enables
real-time KPI tracking and condition monitoring through modular software
components. Over 100 global manufacturers utilize these services (Bosch
Connected Industry, 2021). Additionally, startups like oee.ai provide AI-
based OEE analytics platforms that consolidate multi-machine sensor data
and deliver actionable insights to production teams. In the domain of forming
technology, the Metris concept developed by Andritz Schuler is noteworthy
(SCHULER PRESSEN GMBH, 2024), as it facilitates the cross-system
collection, fusion, and analysis of data at the shop floor level. Comparable
systems are also being industrially implemented by companies such as Elunic
shopfloor.GPT (elunic, 2025) or IFM (IFM, 2025), demonstrating a trend
towards integrating advanced data analytics from sensor to shopfloor level
within manufacturing processes.

Third Fusion Level: From Sensor to Plant Layer (Integration at the
Factory/Site Level)

Characteristics: Plant-level integration entails networking sensor systems
across the entire facility and interfacing with higher-order IT systems such as
MES and ERP. The fusion of data at this level includes not only operational
sensor data (e.g., pressure, flow, temperature, power consumption) but
also contextual information from production planning (ERP), maintenance
logs, inventory systems, and energy monitoring platforms. This multi-source
integration enables a holistic view of production, logistics, and energy flows.

Supported processes include plant-wide energy optimization, integrated
production planning, coordinated maintenance strategies, and sustainability
tracking (e.g., CO2 footprint monitoring). These processes benefit from
near real-time synchronization between shopfloor data and business systems,
thereby facilitating agile and data-informed decision-making.
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Relevant IT systems beyond MES and ERP include energy management
systems (EMS), building management systems (BMS), digital twin platforms,
and advanced process control (APC) environments. Data integration and
governance are supported by middleware solutions, semantic data layers,
and message brokers (e.g., Apache Kafka). Commonly used interfaces
and standards include OPC UA over TSN for deterministic real-time
communication, ISA-95 for vertical integration, B2MML for structured
data exchange, and the Asset Administration Shell (AAS) for interoperable
digital representations. These frameworks enable scalable and standardized
integration across heterogeneous systems, allowing plant operators and
service providers to implement outcome-based business models focused on
continuous performance improvement.

Use Cases: Heidelberg Materials employs a company-wide platform for
managing cement plant operations, leveraging AI to reduce energy intensity
(Heidelberg Materials, 2024). Similarly, Siemens’ Insights Hub platform
enables site-wide machine connectivity and AI-powered analysis, supported
by cloud infrastructure (Siemens, 2025b; Siemens, 2025a). These solutions
are often deployed under service contracts with success-based remuneration.
Energy efficiency contracting, where providers are paid based on realized
savings, represents a further example of value-basedmonetization at the plant
level.

Forth Fusion Level: From Sensor to Value Chain Layer
(Cross-Organizational Integration)

Characteristics: The highest integration level involves the sharing and
utilization of sensor and operational data across company boundaries
throughout the value chain. Data fusion at this stage includes real-time
operational sensor data (e.g., machine status, usage metrics, environmental
conditions), logistics and supply chain data (e.g., inventory levels, transport
status, delivery schedules), and business process data from ERP, PLM,
and SCM systems. Additionally, sustainability-related data (e.g., carbon
footprint, recyclability) is increasingly integrated to support regulatory
compliance and circular economy models.

Supported processes include collaborative supply chain planning, cross-
company quality management, demand forecasting, lifecycle monitoring,
and sustainability reporting. These processes benefit from harmonized and
sovereign data exchange, enabling agility and resilience across networked
production and logistics systems.

Relevant IT systems include cross-company data spaces (e.g., Gaia-X-
compliant infrastructures), trusted data connectors (e.g., IDS Connectors),
blockchain or distributed ledger systems for traceability, and AI platforms
for federated learning and multi-party optimization. Standards and interfaces
such as EDC (Eclipse Data Connector), AS4/ebMS for secure B2B messaging,
and semantic models like RAMI 4.0 and eCl@ss support interoperability.
Frameworks like the International Data Spaces (IDS) architecture and the
Asset Administration Shell (AAS) ensure data sovereignty, auditability, and
trust across participants in the ecosystem.
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This level gives rise to ecosystem-oriented business models, characterized
by multi-actor collaboration via shared platforms or federated environments.
Monetization occurs through platform subscriptions, transaction-based
pricing, or performance-linked compensation, often with added value derived
from shared insights and co-developed services.

Use Cases: Airbus’s Skywise platform aggregates sensor data from over
8,500 aircraft and provides shared access to stakeholders in the aerospace
ecosystem, including airlines, suppliers, and maintenance providers.
The platform supports predictive maintenance and operational efficiency
improvements while enabling a shift in Airbus’s business model toward digital
services (Bernard and Hoffmann, 2023). Similarly, the Catena-X initiative in
the German automotive sector establishes a federated data infrastructure to
support cross-company data exchange and the development of end-to-end
digital business models (e.g., traceability, collaborative quality management,
demand forecasting) (Catena-X Association, 2025).

CONCLUSION

This paper demonstrates that sensor-based integration in manufacturing is
more than a technical upgrade – it is a strategic lever for rethinking value
creation across all levels of industrial operations. By applying a structured
five-layer model, we show how data fusion — from individual machines to
entire value chains — can systematically enable new forms of monetization,
service innovation, and cross-organizational collaboration.

At the heart of this transformation lies the interplay between sensor data,
IT systems, standards, and business processes. Each level of integration
unlocks specific potentials: machine-level intelligence supports usage-based
services like Equipment-as-a-Service; shopfloor-level consolidation enables
real-time production optimization; plant-level fusion drives outcome-based
contracting; and value chain integration fosters ecosystem-based business
models through shared data spaces. In all cases, sensor fusion is not only
a technical enabler, but also a structural driver of new business logic.

What becomes clear is that future-ready industrial business models
cannot be designed in isolation from their digital infrastructure. Data
architecture, interoperability frameworks, and AI capabilities must co-evolve
with business model components such as customer value, revenue logic, and
delivery mechanisms. The proposed layer model serves as a diagnostic tool to
assess digital maturity and as a design template to develop scalable, resilient,
and data-driven service offerings. It bridges the often disconnected worlds
of operational technology and strategic business innovation — making it a
valuable asset for manufacturers navigating the shift from product-centric to
data-enabled business paradigms.
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