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ABSTRACT

With the rapid advancements of autonomous systems and their integration into
everyday life, explainability has become essential for fostering user trust and
promoting effective human-system collaboration. However, the utility of explanations
depends not only on content but also on timing. Prior research shows that pre-
action explanations improve trust and understanding, yet the optimal timing remains
unclear—especially under varying cognitive workloads. Building on our earlier
theoretical framework based on the SEEV (Salience, Effort, Expectancy, Value)
attention model, we empirically tested optimal timing through a two-phase interactive
game. In Phase 1, participants completed a Reaction Time Determination task,
responding to colour-word cues to establish a baseline for processing minimal
instructions. In Phase 2, the Reactive Game, participants collected coins of a target
colour indicated by a brief cue, requiring quick interpretation amid distractions.
Seventeen participants (mean age 44.7 years, SD = 16.4) completed the study.
Analysis of the gameplay data revealed an average reaction time of 2.58s to act
on explanations—closely matching the 3s window predicted by our prior model.
Subjective workload was evaluated using the NASA-TLX, which indicated moderate
mental and temporal, low physical strain, and significant correlations between mental
demand, effort, and frustration—highlighting the impact of timing on cognitive load.
This study contributes to human-centred system design by providing evidence-based
insights into optimising explanation timing for improved user comprehension and
performance. The approach shows how explanation strategies can be informed by
cognitive models and validated in interactive, user-centred settings. Future work will
explore adaptive, context-aware explanations tailored to individual cognitive states.
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INTRODUCTION

Autonomous and intelligent systems are increasingly used in a variety of
application domains. In the area of autonomous driving, SAE level-3 (SAE
International, 2021) vehicles have obtained permits to operate on public
roads in the United States (Mercedes-Benz Group, 2023). However, for
such autonomous systems to achieve widespread public acceptance, it is
essential to build user trust. One effective approach to achieving that is
through providing explanations (Markus et al., 2021) (Ferrario & Loi, 2022).
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That said, merely providing an explanation is not sufficient. The timing of
explanations plays a crucial role in their effectiveness (van Maris et al., 2017)
(Rossi et al., 2020). Prior work shows that explanation timing affects both
trust and users’ mental workload (Koo et al., 2016) (Haspiel et al., 2018)
(Du et al., 2019), with pre-action explanations being particularly helpful in
high-risk situations. Despite this, the optimal timing for delivering pre-action
explanations remains unclear. Recent theoretical frameworks have proposed
timing strategies based on mental workload (Bairy & Frinzle, 2023) (Bairy
& Frinzle, 2024), modelled using the SEEV attention model (Wickens et al.,
2001). Yet, these have not been tested empirically in user-centred scenarios.

To address this, we conducted a controlled user study using an interactive
game to answer the question: How early should a simple explanation be
provided to ensure that the user has enough time to comprebend it? The
study consisted of two tasks. In the Reaction Time Determination phase,
participants responded to colour-word cues to establish a reaction time
baseline. In the Reactive Game, participants controlled an avatar to collect
coloured coins, guided by brief explanations (e.g., colour names). This setup
allowed us to measure how long users took to process and act on simple,
time-sensitive explanations. We also collected NASA-TLX ratings to assess
subjective workload (Hart & Staveland, 1988).

Our paper is organised as follows: We first review related literature
and outline the research gap. Next, we present the study setup and
design, followed by data collection and results analysis. We then discuss
key implications and limitations, and conclude with directions for future
research.

RELATED WORK

Our research lies at the intersection of explanation timing and mental
workload. This section provides a brief overview of relevant work in these
areas, with a focus on autonomous driving and cognitive science.
Explanation Timing in Autonomous Driving: In time-critical domains such
as autonomous vehicles (AVs), the timing of explanations plays a crucial
role. Explanations can enhance user trust, especially in high-stakes situations.
Shen et al. (2020) found that users primarily seek explanations during critical
moments, such as near-collisions. Similarly, (Ruijten et al., 2018) emphasized
that well-timed explanations can reduce cognitive strain and support better
decision-making. Koerber et al. (2018) showed that delaying explanations—
for example, 14s after a takeover request—can actually improve situational
awareness. Kim et al. (2023) developed TimelyTale, a multimodal dataset
aimed at predicting when passengers most need explanations. Further work
by the same group showed that explanations aligned with perceived traffic
risks enhance the passenger experience without increasing cognitive load.
When to Explain: Before or After? Research in cognitive science suggests
that early stimuli can improve performance on repetitive tasks, while late
stimuli may increase error rates (Grosjean et al., 2001). Building on this,
(Chen et al., 2024) explored how explanation timing—before, after, both,
or none—affects trust, comprehension, and satisfaction in Al systems. They
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found that pre-action explanations are particularly helpful for anticipating
bias, while post-action explanations support retrospective understanding.
Combining both approaches led to more accurate trust calibration.

Timing and User Experience: While not the main focus of this study,
explanation timing also intersects with user experience (UX) research. Recent
work suggests that explanations can enhance UX when timed appropriately
(Deters et al., 2024), but may harm it if poorly executed. For instance,
(Elbitar et al., 2021) demonstrated that the timing and rationale behind
permission requests significantly influence user decisions and their evaluation
of the system. Although this work offers valuable insights, integrating
explanation timing into UX design falls outside the scope of our current study.

TECHNICAL DETAILS AND STUDY SET-UP

This study aims to determine how early a brief explanation should be
provided to give users enough time to understand and act on it. We built
a two-part interactive game to simulate explanation delivery in a controlled
environment. Participants engaged in two phases: (1) a reaction time task and
(2) a reactive game requiring quick responses to changing instructions. A final
subjective workload assessment (NASA Task Load Index) was conducted.

The study was implemented using GDevelop 5 (Rivial et al., 2021), an
open-source, no-code platform, chosen for its flexibility and reliable event
tracking. Though the game currently runs offline, it is designed for scalable
deployment, including future online adaptation. Participants interacted with
the game using arrow keys on a standard laptop keyboard. At the start,
participants selected their language (English or German), and then proceeded
through the study using a consistent interface in their chosen language. All
actions were logged and timestamped for later analysis.

STUDY DESIGN

This study examined how long users need to comprehend simple explanations
in a gamified setting. We define simple explanations as those that place
minimal cognitive load on users—typically one or two words, such as “Stop!”
or “Turn Left”. To support understanding, participants first received a
detailed explanation of the game. During gameplay, they received brief,
simplified instructions based on the initial explanation. This two-step
approach follows Krull’s framework (Krull, 1999), which suggests that
understanding is most effective when preceded by an explanation, followed
by clear, actionable instruction.

Embedding the study in a game allowed us to create a controlled yet
engaging environment. This setup helped simulate real-world scenarios
requiring timely explanations, enabling us to observe how explanation timing
influences user performance, adaptability, and cognitive effort. Participants’
reaction times and decision accuracy were measured under varying levels of
cognitive demand.
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The study consisted of three parts:

1. Reaction Time Determination: Participants responded to colour-word
instructions mapped to specific arrow keys (e.g., left arrow for “red”).
This task established a reaction time baseline and tested their ability to
link visual stimuli with motor responses.

2. Reactive Game: Building on the first task, participants collected
coins matching a target colour in a dynamic, multi-lane environment.
Instructions were periodically updated, requiring real-time adjustments.
A practice round preceded the experimental round. Performance data—
including reaction time and decision accuracy—was recorded.

3. Subjective Evaluation: After gameplay, participants completed the
NASA Task Load Index (NASA-TLX), rating their experience across
six workload dimensions: mental, physical, and temporal demand,
effort, performance, and frustration. These ratings provided insight into
perceived task difficulty, complementing the objective performance data.

At the end of each game, we recorded reaction times and adaptability to
changing instructions to assess the effect of explanation timing on decision-
making. Detailed descriptions of each study component are as follows.

Reaction Time Determination Task

This phase included two rounds: a test round and an experimental
round, aimed at establishing baseline reaction times in response to visual
instructions.

Test Round: Participants were introduced to the game mechanics and
practiced the task to become familiar with the setup. No data were
collected from this round. Instructions (colour names) were displayed for
5s, each mapped to a specific arrow key (up, down, left, right). The
mappings appeared below the instruction, and participants had to press the
corresponding key (See Fig. 1). This task assessed the basic ability to process
visual input and translate it into motor responses.

Press the key corresponding to
the colour

Green

*
« 9

+

Figure 1: A snapshot of an instance in the reaction time determination task.
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Experimental Round: This phase involved four sub-rounds, each focusing
on one arrow key direction. Colour-direction mappings were randomized
in each sub-round to prevent memorization. Instructions were shown for
5s, with a 2s pause between sub-rounds. Participants pressed the arrow
key corresponding to the displayed colour as quickly as possible. A “key
pressed” message confirmed correct responses. To increase task difficulty,
a shaking arrow pointing in a different direction appeared alongside the
instruction, acting as a distraction. This was designed to simulate higher
cognitive load and test participants’ ability to focus despite conflicting visual
cues. Reaction times and error rates were recorded throughout, offering
insights into how explanation timing and distractions affect user performance
and decision-making.

Reactive Game

The second phase introduced a more dynamic task—a reactive game—
designed to assess participants’ ability to respond to changing instructions
while managing multiple visual elements. Like the first phase, it consisted of
a test round for familiarization and an experimental round for data collection.

Test Round: Participants practiced the game by collecting coloured coins
using an avatar across three lanes. Instructions (colour names) appeared for
2s, followed by a 10s window to collect the correct coin. The test round lasted
45s and ensured participants understood the controls and task flow. No data
were recorded during this phase.

Experimental Round: In the main round, participants used the left/right
arrow keys to move between lanes and collect coins matching the target
colour displayed at the top of the screen (e.g., “Red”/”Rot”) (See Fig. 2).
Target colours changed periodically, requiring real-time strategy adjustments.
The round lasted 85s. Each instruction was shown for 2s, followed by 9s of
gameplay, testing memory and adaptability without constant interruptions.

Figure 2: A snapshot of the reactive game.
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Coloured coins appeared randomly in all lanes, increasing the need
for quick decisions. The game rewarded accurate coin collection, and
participants continued navigating until the next instruction appeared.
Reaction times, accuracy, and scores were recorded to evaluate performance.
This phase offered insights into how participants processed changing
instructions, retained prior cues, and managed cognitive workload in a
fast-paced, visually dynamic environment.

Subjective Evaluation Using NASA Task Load Index

The final part of the study gathered participants’ feedback on perceived
workload using the NASA Task Load Index (NASA-TLX) form (Hart &
Staveland, 1988)!. Developed by Hart and Staveland, NASA-TLX is a
validated tool widely used in domains like aviation, healthcare, and HCI to
assess subjective workload.

NASA-TLX evaluates workload across six dimensions, each rated on a
scale:

« Mental Demand: Level of cognitive effort required.

« Physical Demand: Degree of physical exertion.

. Temporal Demand: Time pressure felt during the task.

« Performance: Self-assessment of task success.

. Effort: Overall mental and physical effort invested.

« Frustration: Stress, irritation, or annoyance experienced.

These ratings helped identify which aspects of the task were most
demanding and complemented the objective performance data.

DATA COLLECTION

In this study, data collection focused on key metrics related to reaction
time, performance, and demographics, following the university ethics board’s
guidelines. The data types included:

1. Reaction Time:

Phase 1 (Reaction Time Determination): Measured response times to
colour cues via arrow key presses, establishing baseline performance.
Phase 2 (Reactive Game): Captured reaction times during gameplay
as participants collected coins matching target colours, enabling
comparison with Phase 1.

2. Game Score: Recorded in Phase 2 based on the number of correctly
collected target-coloured coins, reflecting participants’ task accuracy and
response under dynamic conditions.

3. Demographic Information: Age and gender were collected to identify
potential performance patterns.

4. User Feedback: Participants completed NASA-TLX forms after
gameplay to report perceived workload across cognitive and emotional
dimensions.

1See NASA-TLX form at: https:/humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf (last
accessed 04/25).
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RESULTS AND ANALYSIS

This section presents findings from both phases, focusing on reaction
times, explanation timing, and subjective workload. The study involved
17 participants (mean age = 44.7, SD = 16.4; 10 female, 7 male), offering
reasonable gender balance for analysis.

Reaction Time Analysis

In Phase 1 (Reaction Time Determination), participants showed varying
reaction times based on arrow direction. The down arrow had the slowest
average (3.16s), suggesting it was less intuitive. The up arrow was fastest at
1.2s.

In Phase 2 (Reactive Game), the average reaction time across trials was
2.58s, closely matching the prior model’s predicted 3s optimal window
for effective explanation processing (Bairy & Frinzle, 2024). This suggests
participants could comprehend and act on explanations within this window.
To support model assumptions and be consistent with (Bairy & Frinzle,
2024), two key factors were controlled:

« Salience: Explanations were shown consistently in format and location,
reducing confusion.
« Effort: Fixed on-screen placement minimized search load.

This consistency contributed to stable reaction times and validated the
model’s 3s timing threshold.

User Feedback (NASA-TLX)

Participants completed the NASA-TLX after the study. Fig. 3 shows median
scores across six workload dimensions. Some of the key findings from NASA-
TLX scores are given below:

« Physical Demand was rated lowest—expected due to simple arrow-key
tasks.

« Mental Demand was moderate, indicating cognitive engagement with
colour-matching and decision-making.

« Temporal Demand & Effort scored moderately, reflecting time pressure
and sustained focus.

« Performance & Frustration varied: while some felt confident, others
reported frustration, linked to difficulty meeting goals.

The correlation matrix, shown in Fig.4, provides insights into
relationships between demographic data and their perceived workload,
obtained from NASA-TLX variables. The results can be categorized into
significant and marginally significant correlations.

Significant Correlations:

« Mental Demand & Effort (r = 0.49, p = 0.0076): Higher mental demand
led to higher effort.

« Mental Demand & Performance (r = 0.39, p = 0.0169): Greater effort
maintained performance.

« Mental Demand & Frustration (r = 0.45, p = 0.0145): Increased demand
raised frustration.
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Figure 3: Boxplot of NASA-TLX scores across dimensions.
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Figure 4: Correlation matrix of NASA-TLX scores and demographic data.

Marginally Significant Correlations:

Age & Temporal Demand (r = —0.37, p = 0.0797): Older participants
felt less rushed.

Age & Frustration (r = —0.36, p = 0.0795): Older participants reported
less frustration.

Effort & Frustration (r = 0.47, p = 0.0935): More effort was linked to
higher frustration.

Although not all correlations reached statistical significance, the results

suggest patterns that merit further exploration with larger samples. While
physical demands were low, the task imposed moderate cognitive load,
particularly under time pressure. The controlled design and timing analysis
support the 3s window as a baseline for effective explanation delivery.



Timing Matters - The Role of Timing in Explanation Delivery 255

DISCUSSION

This study shows that even simple, single-word explanations can serve
as a valuable baseline for identifying the minimum lead time users
need to act. While not a complete solution, this minimalist approach
provides a foundation for designing explanations in time-critical systems like
autonomous vehicles (AVs), where timing is crucial (Bairy & Frinzle, 2024).
Understanding this baseline is necessary before introducing richer, context-
aware explanations, which may vary in effectiveness depending on users’
cognitive capacity, stress, or familiarity with automation. As added context
increases complexity, it becomes essential to balance informativeness with
cognitive load.

Collected data—reaction times, game scores, and demographics—enabled
performance and workload assessment without overwhelming participants.
Reaction time was particularly insightful: the slowest average (3.16s) for
the down arrow suggested higher cognitive or motor effort, while the 2.58s
average during explanation trials aligned closely with the model’s predicted
3s optimal window. This supports the idea that users need at least 3s to
process a simple explanation under moderate cognitive load.

NASA-TLX scores further clarified workload effects. Mental demand
correlated significantly with effort (p = 0.0076) and frustration (p = 0.0145),
reinforcing that increased cognitive complexity raises perceived effort
and emotional strain. Age showed moderate but not always significant
correlations with temporal demand and frustration. These results emphasize
the importance of managing cognitive load when designing explanations for
real-time systems.

While the participant group was diverse in age (M = 44.7,SD = 16.4) and
included 10 women, the small sample size (n = 17) limits generalizability.
Future studies with larger, more balanced samples are needed for stronger
validation.

The study was conducted in a city-centre university shop, which increased
ecological validity by exposing participants to real-world distractions like
noise and foot traffic. Although this introduced some variability, it showed
that users can still engage meaningfully with explanations in naturalistic
settings.

Limitations include the gamified design, which, while useful for
engagement and consistency, does not replicate the complexity or stakes of
real-world AV use. Abbreviated explanations (instructions) isolated baseline
timing but offer limited insight into responses to richer or adaptive content.
Also, NASA-TLX ratings are subjective and may introduce bias. Nonetheless,
the task’s simplicity provided a clear view of baseline comprehension
thresholds.

Future work should explore adaptive explanation timing and content
based on real-time user state, ideally in simulators or real AV contexts.
It will also be important to determine when added context becomes
counterproductive—offering just enough information to be helpful without
overwhelming the user.
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CONCLUSION

This study investigated participants’ reaction times, performance, and
subjective workload during two phases of a controlled experiment. By
analysing baseline reaction times in a simple cue-response task (phase 1) and
comparing them to dynamic reaction times during a game-based setting with
explanations (phase 2), the study validated the predicted 3s optimal timing
window for processing explanations. Controlled factors such as Salience and
Effort were critical in maintaining consistent participant responses and also
ensuring the reliability of the findings.

The NASA-TLX data reinforced that the task imposed moderate
mental and temporal demands, with minimal physical effort. Correlation
analysis revealed meaningful relationships between cognitive workload
components—most notably, that higher mental demand was significantly
associated with increased effort and frustration. While age showed moderate
correlations with several workload measures, the small sample size limits the
strength of demographic conclusions.

While this study establishes a strong foundation for understanding
reaction times and workload in controlled environments, there are several
opportunities for further exploration. Notably, the game was designed with
future scalability in mind, allowing for expansion into online studies. A
natural next step would be to implement an online version of the study
and evaluate whether the results differ when conducted in a less controlled,
remote setting.

Future research could also investigate the impact of varying explanation
lengths to determine how the content and complexity of an explanation
influence the optimal timing for its delivery. Additionally, studies could
explore the effects of different salience factors, such as changes in font size,
colour, or the placement of explanations, on participants’ reaction times and
perceived workload.

ETHICAL CONSIDERATIONS

This study followed university ethical guidelines. Participants signed a
consent form outlining the study’s purpose, data collected (e.g., reaction
times, scores, demographics), and their right to withdraw. All data were
pseudonymized using unique codes (codelist) stored securely and separately
from research data, accessible only to authorized personnel. No personally
identifiable information was recorded. Personal data, including the codelist,
was deleted by December 31, 2024; anonymized data is retained for research
purposes. Only individuals aged 18+ participated, ensuring relevance to AV
contexts, where the legal driving age in Germany is 18.
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