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ABSTRACT

The use of synthetic data in biomedicine is growing rapidly, offering an alternative
when real patient data is scarce or restricted due to privacy concerns. Synthetic
datasets aim to replicate the statistical properties of real data, enabling researchers
to develop models and perform analyses without compromising confidentiality.
However, their application raises methodological concerns—particularly regarding
when and how synthetic data should be used in the analysis pipeline. A key issue
is whether analyses should be conducted on real data and validated with synthetic
data, or whether synthetic data can serve as the primary basis for analysis. The
lack of consensus poses questions about the reliability of findings derived solely
from synthetic datasets. This study explores the issue using Tabular Variational
Autoencoder (TVAE) to generate synthetic versions of a bladder cancer recurrence
dataset. The authors compare correlation and feature importance results from
synthetic and original data. Findings show that while synthetic data can reflect broad
trends, model sensitivity—especially with Random Forests—can lead to discrepancies
in feature importance and predictive accuracy. In contrast, basic statistical methods are
more stable. These results highlight the need for careful methodological planning and
transparent reporting when using synthetic data, as analytical outcomes may depend
heavily on when and how such data is introduced.
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INTRODUCTION

Data synthetization is an extremely useful tool in data science, especially
biomedicine where limited amounts of data are common due to well-known
difficulties in data acquisition within this domain (Zheng, 2015). While
data synthetization has many potential benefits – such as data pseudo-
anonymization, creation of more robust machine learning models and overall
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model quality increase, an important note remains that this data is not
real-world data, and the methods used for synthetization may or may not
introduce changes to the data that may not be readily apparent with common
analysis techniques (Giles, 2022).

One of the techniques that is commonly used for data analysis is feature
importance determination. While this technique is commonly used by
machine learning experts as a first step in feature engineering approach, it can
also be used as a technique to determine which of the parameters influence
the output variable – e.g. which of the patient metrics influence the likelihood
of a positive diagnosis (Baressi Šegota, 2024).

A question arises – should the analysis of this be performed only on original
data, or can it be done on synthetic data? Most synthetization techniques
are designed to copy the statistical distributions within data, which may
not copy the exact feature influences as well. This paper tests one of the
most commonly used techniques – tabular variable autoencoder (TVAE) on
a bladder cancer recurrence dataset, and evaluates the connection between
variables with four feature importance metrics in order to determine if
there is a change of feature importances between original and synthetized
datasets. The paper will first present the used methodology – including the
used dataset, synthetization approach and feature importance determination.
Following this, the results of feature scores will be presented and discuss, with
the final part presenting the conclusions drawn from those results.

METHODOLOGY

Dataset

The dataset used in this study is the Bladder Cancer Recurrence dataset
(Singh, 2021) - a freely publicly available dataset consisting of data for 294
patients. The data used as the input in this study consists of three data
vectors – the number of individual tumors, their size (in centimeters, for
largest tumor) and the type of treatmant applied (placebo, pyridoxine or
thiotepa – encoded as numerical classes 0, 1 or 2 respectively). The targeted
output was a binary target indicating whether a recurrence of the cancer
occurred within the patient (0 indicating no recurrence, and 1 indicating one
or more recurrences) (Andrews, 1985; Wei, 1989).

Data Synthetization With TVAE

The Tabular Variational Autoencoder (TVAE) is a generative model designed
to synthesize tabular data while preserving statistical relationships among
variables (Li, 2019). It extends the conventional Variational Autoencoder
(VAE) framework to accommodate heterogeneous data types—continuous,
ordinal, and categorical—commonly found in structured datasets (Öğretir,
2022). The TVAE comprises two neural networks: an encoder qφ(z|x) and a
decoder pθ (x|z), where x ∈ Rd denotes a data sample in d-dimensional space,
and z ∈ Rk is a latent variable sampled from a prior distribution. The encoder
maps the observed data x to a latent representation z by approximating the
posterior distribution, while the decoder reconstructs x from z. A standard
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multivariate Gaussian prior is assumed on the latent space (Tan, 2024):

p(z) = N (0, I) (1)

The objective function of the TVAE is the evidence lower bound (ELBO),
which balances reconstruction accuracy and regularization of the latent space
(Fonseca, 2023):

L (θ ,φ;x) = Eqφ(z|x)
[
logpθ (x|z)

]
−DKL

(
qφ (z|x) ‖ p (z)

)
(2)

Here, DKL denotes the Kullback-Leibler divergence between the
approximate posterior and the prior distribution. The reconstruction term
is modeled using appropriate likelihood functions based on data types:
Gaussian for continuous variables and categorical cross-entropy for discrete
variables. To stabilize training, TVAE discretizes categorical features using
one-hot encoding and normalizes continuous features via Gaussian Mixture
Models (GMMs), preserving multimodal distributions (Apellániz, 2024).
Once trained, synthetic data generation proceeds by sampling latent vectors
zi ∼ N (0, I) and passing them through the decoder (Wu, 2024):

x̂i = argmax
x
pθ (x|zi) (3)

The decoder network outputs parameters for each feature’s distribution,
from which synthetic values are sampled. For categorical variables, this
corresponds to drawing from a softmax distribution; for continuous
ones, from a parameterized Gaussian mixture. TVAE’s capacity to learn
complex joint distributions makes it particularly suited for applications
requiring realistic data synthesis in structured domains, such as biomedical
datasets. Importantly, by training the model on real patient records and
subsequently generating new records from latent samples, researchers can
perform downstream tasks (e.g., correlation analysis, classification, or
feature ranking) without direct exposure to sensitive data, thereby enhancing
privacy without entirely sacrificing fidelity (Apellániz, 2024). Nonetheless,
like all generative models, the quality of the synthetic data depends
on latent dimensionality, network architecture, and data preprocessing
pipelines. Empirical validation remains essential to confirm the preservation
of meaningful relationships and avoid artifacts that may distort downstream
inferences (Tan, 2024).

In this study, the model is developed with training for 25,000 epochs,
which achieved the overall data similarity index of 94,56%, indicative of a
high-quality data synthetization. A total of 1000 points are synthetized and
mixed with the data at different levels (100, 250, 500, 750 and 1000 points),
prior the feature influence analysis.

Feature Influence

Identifying relevant features is a central task in biomedical data analysis,
particularly when working with high-dimensional datasets or synthetic
data. Two complementary strategies for quantifying feature importance are
examined in this study: statistical correlation-based approaches, and model-
based importance estimation using ensemble learning. Correlation methods



480 Šegota et al.

quantify the degree of association between individual features and a target
variable, typically assumed to be continuous or ordinal. Let xi ∈ Rn denote
the vector of observations for feature i, and y ∈ Rn the corresponding
target values. The Pearson correlation coefficient evaluates the strength of
a linear relationship between xi and y, assuming both variables are normally
distributed (Benesty, 2009):

ρPearson
(
xi, y

)
=

∑n
j = 1(xij − x̄i)(yj − ȳ)√∑n

j = 1(xij − x̄i)2
√∑n

j = 1(yj − ȳ)2
(4)

This metric captures only linear dependencies and is sensitive to outliers
and non-normality.

The Spearman rank correlation assesses monotonic relationships by
comparing ranks rather than raw values. If R(xi) and R(y) are the rank-
transformed vectors (Wissler, 1905):

ρSpearman
(
xi, y

)
= ρPearson

(
R (xi) ,R(y)

)
(5)

Spearman correlation is robust to outliers and capable of detecting non-
linear monotonic trends.

Kendall’s τ measures ordinal association by evaluating the concordance of
pairwise observations (Schaeffer, 1956):

τ
(
xi, y

)
=
C−D(n

2

) (6)

whereC is the number of concordant pairs andD is the number of discordant
pairs. Kendall’s τ is particularly suitable when the data exhibit ties or a
high degree of ordinal noise. In all three methods, the magnitude of the
correlation coefficient is taken as a proxy for feature importance. Features
with coefficients near zero are assumed to contribute little explanatory power
to the target variable.

Random Forests (RF) are ensemble learning models based on collections
of decision trees trained on bootstrap samples and random feature subsets
(Tanha, 2017). Feature importance in RF models is typically computed using
the mean decrease in impurity (MDI), which quantifies how much each
feature reduces the Gini impurity or mean squared error across all trees in
the forest. Let T denote the set of all decision trees in the ensemble, and for
each feature xi, let Sti be the set of splits involving xi in tree t ∈ T. The total
importance of xi is (Šegota, 2025):

Imp (xi) =
1∣∣T∣∣ ∑

t∈T

∑
s∈St

i

1I (s) ·
Ns

Nt
(7)

where 1I (s) is the impurity reduction at split s, Ns is the number of samples
reaching that node, and Nt is the total number of samples in tree t. This
method captures non-linear interactions and is robust to multicollinearity
among features. However, it may exhibit bias in favor of features with
more levels or broader numerical ranges (Meyer, 2021). In the current study,
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feature rankings obtained from correlation-based and model-based analyses
are compared to assess the fidelity of synthetic data in preserving variable
relevance. Discrepancies in these rankings serve as indicators of structural
distortion introduced during the synthetization process.

RESULTS AND DISCUSSION

The data shown in Figure 1. demonstrates the scores of various metrics,
per each of the targets. The first given graph is the feature importance on
the original data, while the remaining ones are evaluations on the synthetic
datasets with different amount of data points. While some of the influences
are contained, we can see changes in the correlation smaller in case of number
of tumors, which remains similar, but higher for other two metrics. Notably,
the size metric reverses its correlation into negative. This change is also the
case for the random forest feature importance, with the metrics showing a
significantly different scores compared to the original dataset.

Figure 1: The comparison of metrics on real and synthetic datasets.
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The similar can be seen in Figure 2, where the scores are shown as
heatmaps. Each row presents one of the evaluation methods, and each
column presents one of the used inputs. The position of the images is the
same, with the first (upper left) being the original data heatmap, while
the others are calculated on the different amounts of synthetic data. This
visualization confirms the previously given one with a clear difference visible
between the heatmap for original data and synthetic data. The differences
between the different amounts of sznthetic data are present, but not not as
pronounced. The differences seen between these subfigures in Figure 2 are
expected statistical variation introduced by undersampling data.

Figure 2: The comparison of heatmaps of scores.
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CONCLUSION

This paper performed the analysis with the goal of testing how the feature
influence changes between the original, real-world collected, data and the
data that was generated using TVAE synthesizer. The dataset used dealt with
the bladder cancer recurrence rates – with three features tested (size of tumor,
number of tumors and the type of used therapy. A total of 1000 data points
are synthesized, and the evaluation is performed on different sized, randomly
selected, subsets of the data.

The results demonstrate significant differences in the measured feature
importances between original data and the synthesized data. While the values
are consistent amongst the different sized synthetic datasets, they differ
greatly from the original data. This points towards an important conclusion
and that is that even if the synthetization method shows high performance
(standard evaluation techniques – comparison of column shapes and column
data pairs shown a high evaluation of over 94% for the used synthetic
dataset), it cannot be assumed that the feature influences contained in the
synthesized dataset are going to be the same as in the original data, at least
within the confines of the presented experimental setup. This means that
any feature influence analysis should be performed on original data, and not
synthesized.

Future work should focus on the generalization of the presented research –
testing different synthetization techniques on different datasets to see if there
are synthetization methods that allow for the feature importance to be tested
on the synthesized datasets.
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