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ABSTRACT

In collaborative human-robot assembly, robust error identification is paramount for
ensuring process integrity and safety, particularly in the post task phase where a
comprehensive analysis provides an opportunity to identify subtle and cumulative
errors that may have been missed in real-time. Traditional manual verification is
often tedious and prone to human error, including oversight and fatigue, which
can compromise quality. This paper evaluates the efficacy of an automated, vision-
based error detection system using OpenCV template matching as a more reliable
alternative. Our method identifies procedural errors, such as missed components or
out-of-sequence operations, by comparing real-time images of the assembly state
against a library of reference templates that depict correctly completed procedural
steps. Visual dissimilarity metrics are used to automatically flag deviations from the
expected sequence. Experimental results demonstrate that the automated system
significantly outperforms manual verification in the consistent and rapid identification
of both missing and mis-sequenced assembly steps. Whilst its performance can be
influenced by challenges such as variable lighting and low-contrast features, the
vision-based approach proved substantially more dependable than human inspection
especially for structured and defined tasks where the objects consistent and predicted
visual features. We conclude that template matching provides a robust and scalable
solution for quality control in collaborative assembly tasks. This automated approach
enhances operational efficiency and safety, though further tuning may be required to
optimise performance in visually complex environments.
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INTRODUCTION

Human-robot collaboration has increased in manufacturing due to their
ability to combine human flexibility with robotic precision (Fan, Zheng
and Li, 2022). These systems are particularly valuable in complex
assembly tasks where human dexterity is essential, but consistency and
repeatability are challenging to maintain (Gervasi et al., 2023). However,
despite advancements in robotic automation, human involvement introduces
variability, leading to procedural errors such as missing components,
incorrect sequencing, or misalignments (Caterino et al., 2023).
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As robots become increasingly integrated into manufacturing, much
attention has been given to ensuring their safe and accurate performance
during collaboration. Robotic systems typically follow pre-programmed
routines or AI-driven algorithms, but human involvement may introduce
unpredictable deviations from expected workflows (Lodhi and Zeb, 2025).
To maintain process integrity without compromising worker productivity,
there is a growing need for automated, adaptive error detection systems
(Caterino et al., 2023).

To ensure process integrity in manufacturing, standard procedures and
instructions are typically enforced, supported by quality control personnel
who conduct manual inspections during or after assembly. However, these
manual checks are susceptible to human limitations such as fatigue, oversight,
and cognitive bias (Kim et al., 2020). Errors detected post-assembly can result
in costly rework or scrapping of components, highlighting the need for earlier
intervention.

To address these challenges, vision-based quality control systems have
emerged as effective, non-intrusive solutions for real-time monitoring. These
systems offer the advantage of continuous oversight without interrupting
the workflow. While advanced methods such as deep learning and stereo
vision have demonstrated strong performance in detecting defects, their
practical deployment is often hindered by high computational requirements
and the need for extensive training datasets (Frustaci et al., 2022). These
limitations restrict their scalability, particularly in resource-constrained
environments.

In dynamic human-robot collaborative environments, errors are not static
defects but transient events that occur during the workflow (Puttero et al.,
2023). Detecting these in process is essential. A promising approach involves
using low-cost, computationally efficient methods such as template matching
(Duan et al., 2024). This technique is particularly suited for structured
environments where assembly steps are well-defined, offering the potential
for immediate feedback on deviations and significantly enhancing error
prevention during the process itself.

RELATED WORK

In this section we shall look at the problem from three areas since all these
areas combined provide the unique approach this paper has taken. We
will start with human–robot collaboration, error identification, and lastly
computer vision object detection.

Previous work on human-robot collaboration has highlighted the
importance of reviewing the mistakes in assembly tasks (Antonelli and
Stadnicka, 2019), whether they’re from a human (Caterino et al., 2023) or by
a robot (Stiber, Taylor and Huang, 2022). Two areas have had a substantial
amount of research done on them, one being the understanding of how
humans react to and /or resolve robot errors (Honig and Oron-Gilad, 2018;
Liu and Wang, 2021; Stiber, Taylor and Huang, 2022). Secondly, we have
the human errors based on their actions that might be unsafe as they interact
with a robot. The insight provided by the scope of human errors and the
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type of errors has been explored (Liu et al., 2025). However, most of these
errors are based on what the human does in regard to their safety around
the robot and not particularly their role in the assembly process. Research
shows human errors affect the efficiency, safety, and performance of a system
(Esposito et al., 2025). One of the highlighted errors, amongst other errors, is
a sequence error, which entails deviating from a predefined sequence through
insertion, omission, substitution, or reversal of an action (Klages, Graf and
Zaeh, 2024; Esposito et al., 2025).

Various computer vision techniques have been used to analyse the errors,
including object detection, which involves training a dataset (Conati et al.,
2020). Template matching used in this scenario is based on 2D images
with a fixed camera, as it reduces computational cost as compared to 3D
images. Action and task recognition have been used to check for procedural
errors (Conati et al., 2020), but the algorithm needs to be trained before
deployment. For example, Bovo et al. (2020) used action recognition by
detecting the errors through recognising hand movements and eye gaze,
segmenting video frames where a person places an object. Another approach
is one taken by Zhang et al. (2022) used recurrent neural network to detect
the faults through the video recordings. Both action recognition and object
recognition commonly utilise RNNs (Soran, Farhadi and Shapiro, no date;
Ay and Emel, 2025).

In terms of assembly verification, template matching has proven effective
for tracking part assembly at each stage, as demonstrated by Pang
et al. (2023). It has also been useful for identifying object-related
errors (Kong, Wu and Song, 2022). When the assembly process is
standardised, meaning object orientation, lighting, and positioning are
consistent, template matching becomes a convenient and reliable method
for part identification. Pang et al. (2023) provide the foundational
viability of the method but also indicates that the error classification
and the integration of action-task verification could further enhance its
effectiveness.

METHODOLOGY

Experimental Setup

The experiment aimed to evaluate the effectiveness of an automated, vision-
based error detection system during a collaborative human-robot LEGO®

assembly task. In this setup (see Figure 1), a robot constructed the base of
three sequential LEGO® structures, while a human participant completed the
top layers using predefined instructions. The assemblies had to be completed
in a strict order—assembly 1 before 2, and 2 before 3. Each structure had
a unique configuration, clearly depicted in printed reference images that
were available to the participant throughout the task. The entire process
was continuously recorded by an overhead camera for later analysis. Each
participant completed the assemblies individually, and their progression from
one assembly to the next was used as an indicator that the previous structure
had been completed.
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Figure 1: Experiment setup.

Error Categories

Three distinct categories of errors were defined for detection as shown in
Table 1.

Table 1: Error categories.

Error Description

Sequence Violation Commencing a subsequent assembly before the prior
one was fully and correctly completed.

Construction Error Assembling components incorrectly, including the
misplacement, omission, or incorrect orientation of
LEGO® pieces relative to the reference design.

Mixed Error Any instance where both a sequence violation and one
or more construction errors occurred simultaneously.

Automated Error Detection System

The video recordings were processed by a custom error detection pipeline
developed using the OpenCV template matching library (OpenCV: Template
Matching, 2025). The system employed template matching to identify
deviations between the assembly produced by each participant and a library
of reference images corresponding to correctly completed configurations.
Video frames were periodically extracted and compared against these
templates to detect discrepancies.

Dissimilarity metrics were calculated using normalised cross-correlation
referred to as cv2.TM_CCORR_NORMED (OpenCV: Object Detection,
2025). Deviations exceeding pre-defined thresholds triggered an automatic
error flag. The system was designed for minimal human intervention and
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processed frames at an average rate of under two seconds each, enabling
near-real-time analysis.

Establishing a Ground Truth via Human Verification

To create a robust benchmark for evaluating the automated system, all
video recordings were meticulously analysed by a single, independent human
reviewer. This reviewer was an expert in the assembly task but had no
involvement in the experiment’s execution.

To ensure the credibility and consistency of the human-generated labels, a
formal intra-rater reliability protocol was implemented (see Figure 2). First,
a detailed rubric was created, providing objective, unambiguous criteria
for classifying each type of error. Secondly, the reviewer analysed all video
recordings and logged any observed errors according to the rubric. This was
followed by a four-week “washout” period, after which the reviewer had
no direct recollection of their initial specific judgements. Finaly, the reviewer
was re-analysing the videos using the same rubric. The consistency between
the first and second assessment passes was then quantified to validate the
reliability of the reviewer’s judgements.

Figure 2: Intra-rater reliability protocol for manual verification.

Comparison Framework and Metrics

The reliability of the expert reviewer’s assessments was confirmed by
calculating Cohen’s Kappa (κ) on the two passes, which indicated a high
level of intra-rater agreement (κ>0.65). Having established the reviewer’s
high consistency, the assessments from their first pass were adopted as the
validated ground truth for the experiment.

The verification speed which is the average time taken by the automated
system to analyse a single assembly, compared with the time taken by the
human reviewer. Additionally, the performance of the automated system
was then evaluated against this ground truth using the metrics described in
Figure 3 and Table 2.

Table 2: Metrics used to evaluate the performance of the automated system.

Metric Definition Formula

Specificity Proportion of actual negatives correctly
identified.

TN / (TN + FP)

Sensitivity/
Recall

Proportion of actual positives correctly
identified.

TP / (TP + FN)

Precision Proportion of predicted positives that are
actually positive.

TP / (TP + FP)

F1 Score Harmonic mean of precision and recall. 2 *(Precision * Recall) /
(Precision + Recall)
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Figure 3: Confusion matrix of true and false negatives and positives.

RESULTS AND DISCUSSION

The performance of the automated verification system was evaluated against
manual verification across the three distinct error types using keymetrics such
as recall, precision, specificity, and F1 score to determine their effectiveness
in identifying and classifying these errors (See Figure 4).

Figure 4: The three errors and the graphs of the metrics based on their performance.

In the construction category, the manual method outperformed the
automatedmethod achieving a higher recall of 0.875 and an F1 score of 0.875
compared to that of the automated system, 0.625 and 0.714, respectively.
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Both methods demonstrated equal specificity of 0.990, indicating a
comparable ability to correctly identify error-free assemblies. Observational
analysis of the video recordings revealed that the automated method
misclassified items with subtle differences that could not be identified by
the template matching algorithm and where the lighting and background
of the template had changed. This shows that while the algorithm is
effective in general pattern recognition, it may lack sensitivity to fine-grained
structural deviations. Adjusting the algorithm’s accuracy threshold could
improve detection but must be carefully balanced to avoid misclassifying
valid assemblies affected by orientation, lighting, or scale variations.

For sequence errors, the automated method demonstrated perfect
performance, with recall, precision, specificity, and F1 score all at 1.000. This
indicates it was able to detect every sequence error without any false positives
or negatives. The manual method, however, showed weaker performance,
with recall and precision both at 0.765, and a matching F1 score of 0.765.
The manual analysis while rapidly going through the video would have led to
this. This also might be introduced by fatigue since once a person is looking
at several videos, they will tend to get tired of doing that every time. Here
the reliance on the automated checks might be more useful than the manual
verification. Finally, in the missed errors category both methods performed
similarly showing no difference in identifying areas where both construction
and sequence errors occurred. However, they both missed identification at
different points hence the recall of 0.833.

The overall performance comparison between the two methods across
all observations reveals a consistent advantage in favour of the automated
approach across all evaluated metrics (See Figure 5).

Figure 5: Overall comparison of the automated and manual methods.

The automated method achieved higher recall (0.871 vs. 0.806), precision
(0.964 vs. 0.833), specificity (0.995 vs. 0.977), and F1 score (0.915
vs. 0.820), indicating greater consistency and reliability in detecting and
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classifying assembly errors. These results show that the template matching
method may be better suited for high-throughput environments requiring
accurate and consistent error detection.However, statistical analysis using the
Wilcoxon Signed-Rank Test revealed that the difference in F1 scores was not
statistically significant (p = 0.655), implying that the observed performance
advantage may not be conclusive given the limited sample size.

Verification speed was evaluated for both manual and automated methods
under controlled playback conditions. Initially, the average duration required
to manually review the video recordings at double-speed playback was
calculated to be 128 seconds. Under the same playback conditions, the
automated system completed verification in 98 seconds, demonstrating a
faster processing capability. This suggests that the optimized automated
method can outperform human reviewers when operating under equivalent
time constraints. A second comparison assessed actual verification times
under typical usage conditions used during the experiment. Manual reviewer,
who was permitted to skip through footage, achieved an average verification
time of 34 seconds per video. In contrast, the automated system, capable of
parallel processing 8 recordings at a time, reduced the average verification
time to 26 seconds per video. The results demonstrate the superior overall
performance of the template matching method to the manual verification
under this experimental setup.

CONCLUSION

The evaluation demonstrates that while the automated system shows promise
for assembly verification tasks, background consistency is essential for
reliable real-world deployment. The template matching proved to be as good
overall, including both precision and recall in. This, therefore, would be
ideal where workstations have a fixed background, and the work surfaces
are always similar to those taken during the template capture. In real-
time scenarios that have the same background, the automated system would
be more practical due to its speed in identifying the objects; however, if
the condition or background changes, it would be better to have a human
verifier analyse the results and mostly the false negatives in sequence and
construction. This work lays the groundwork for future exploration of a
hybrid approach, where the automated system operates with a high accuracy
threshold, particularly for construction errors, and flags only potentially
faulty items for human review. This targeted verification could even be further
streamlined by highlighting specific frames where anomalies are detected,
allowing reviewers to quickly assess critical moments without scanning entire
videos. Such a system could offer a scalable, efficient, and reliable solution
for real-world assembly verification tasks.
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