
Applied Human Factors and Ergonomics (AHFE2025), Vol. 199, 2025, 1006–1016

https://doi.org/10.54941/ahfe1006913

Semantic Segmentation-Guided 3D
Shape Reconstruction of Indoor Scenes
Using a PointNet-Based Autoencoder
Takahiro Miki1, Yusuke Osawa1, and Keiichi Watanuki1,2

1Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo,
Sakura-ku, Saitama-shi, Saitama 338–8570, Japan

2Advanced Institute of Innovative Technology, Saitama University, 255 Shimo-okubo,
Sakura-ku, Saitama-shi, Saitama 338–8570, Japan

ABSTRACT

This study aims to automatically construct virtual spaces that faithfully reflect the
geometry and object arrangement in real-world environments. As a first step, we
proposed a method for the three-dimensional (3D) shape reconstruction of indoor
scenes using a PointNet-based autoencoder guided by semantic information. The
proposed method first segmented a 3D point cloud into semantic classes and then
applied a separately trained autoencoder to each class. To validate its effectiveness, we
used the ScanNet++ indoor scene dataset and our own real-world data captured using
a 3D scanner, performing qualitative visual comparisons and quantitative evaluations
using metrics such as Chamfer distance (CD) and Earth mover’s distance (EMD). The
results demonstrated that the proposed method achieved high visual fidelity and low
CD error (4.23 × 10–4) on validation data similar to the training set. Although point
scattering was observed in the unseen test data, the reconstruction fidelity still showed
a clear improvement over prior work. Furthermore, we analyzed the counterintuitive
observation that EMD showed an opposite trend to CD and showed that this was
a statistical effect arising from the difference in the number of instances used for
evaluation. A potential application of this method was also identified: by limiting
the target classes, furniture could be intentionally excluded and only the skeletal
structure of the space could be reconstructed. Future work will explore enhancing the
local feature representation by adding normal information as an input feature and
improving robustness through post-segmentation noise removal.
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INTRODUCTION

In recent years, the advancement of extended reality (XR) technologies,
including virtual reality (VR) and mixed reality (MR), has extended their
applications beyond entertainment to fields such as medicine and welfare. VR
offers a high degree of expressive freedom in virtual environments because
head-mounted displays (HMDs) immerse the entire field of view of users.
However, its use in arbitrary settings poses challenges because it isolates
users from their physical surroundings and restricts their range of motion
(Ishizaka et al., 2018). By contrast, MR imposes fewer movement constraints
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but is generally limited to applications such as overlaying virtual objects
onto the real world. These limitations underscore the need for technologies
capable of generating VR environments that dynamically reflect the real
world in real time. These capabilities are particularly relevant to applications
involving spatial transformations and systems that support human activity
and cognition, including indoor space design assistance and spatial
awareness enhancement. Nonetheless, automating the construction of highly
expressive virtual environments—capable of manipulations such as tilting or
expanding space while preserving user awareness of physical surroundings—
remains a difficult challenge because of the complexity of the underlying
processes.

Three-dimensional objects, typically represented as mesh data comprising
vertices and faces, are essential for constructing virtual environments.
Recently, the automatic generation of 3D objects from point clouds has
become an active area of research, with many generative models proposed
based on deep learning methods such as generative adversarial networks
(GANs). Numerous models, including the L-GAN (Achlioptas et al., 2018),
employ PointNet (Qi et al., 2017) as an encoder for feature extraction,
thereby leveraging its ability to preserve the permutation invariance of point
cloud data. However, these models are typically evaluated using large-scale
datasets of isolated CAD objects (Wu et al., 2015) that fail to capture
the complexity of real-world indoor environments. Spatial objects such
as walls, floors, and furniture exhibit characteristics distinct from those
of individual CAD models; hence, a direct transfer of learned features is
difficult.

Therefore, this study aims to achieve a high-fidelity 3D reconstruction of
entire indoor scenes. We proposed a PointNet-based autoencoder guided by
semantic segmentation. In this approach, a scene was first segmented into
semantic classes and then an optimized autoencoder was applied to each
class to reconstruct the individual object instances. The proposed method
was trained and evaluated using the large-scale indoor dataset, ScanNet++
(Yeshwanth et al., 2023).

DESIGNING A SEMANTIC SEGMENTATION MODEL

Overview of the Framework

The framework proposed in this study is illustrated in Figure 1. In
Step 1, semantic segmentation was performed on the indoor data to
partition the scene into class-specific regions. In Step 2, an autoencoder
was constructed for each corresponding class. Previous research that
simultaneously trained on entire scenes faced the challenge of insufficiently
capturing class-specific feature representations (Miki et al., 2025). Our
method addressed this by training a dedicated autoencoder for each class
and enabling the precise extraction and reconstruction of features for distinct
regions such as walls, ceilings, floors, and tables. This approach aims
to improve the segmentation accuracy and the expressive power of scene
understanding.
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Figure 1: Semantic segmentation-guided 3D shape reconstruction framework.

Target Classes

We initially focused on four classes: wall, floor, ceiling, and table. These
classes are foundational elements that define the overall structure of a scene
and appear frequently. In particular, walls, floors, and ceilings are the
primary components that form the boundaries of a space, making them
indispensable for a geometric understanding of the entire scene. The table
class was selected because it is a common object with a relatively simple
shape, making it suitable for validating the effectiveness of an autoencoder.
By limiting our scope to these high-frequency geometrically and semantically
important classes, we could efficiently and robustly evaluate the efficacy of
the proposed method.

Dataset

We used the 3D indoor scene dataset, ScanNet++, for training.
ScanNet++ is a large-scale dataset that links high-quality 3D geometry
with color information and is designed for various tasks including semantic
segmentation (Figure 2). It currently consists of 1006 scenes with data
from multiple sensors, including laser scanners, DSLR cameras, and iPhone
LiDAR, along with semantic classes and instance labels. The dataset also
provides an official data split for semantic segmentation, dividing it into 230
training, 50 validation, and 50 test scenes.

Figure 2: Example of a scene from the ScanNet++ dataset with semantic labels applied
(adapted from Yeshwanth et al., 2023).

Training a Semantic Segmentation Model Using Point Transformer V3

We constructed a semantic segmentation model for 3D point clouds using
Point Transformer V3 (Wu et al., 2024). Point Transformer V3 is a
transformer-based model that efficiently extracts local and global features
by applying self-attention to point cloud data. We trained the model for
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100 epochs on four target classes: wall, ceiling, floor, and table. The model
performance was evaluated using intersection over union (IoU) that measured
the overlap between the predicted and ground-truth regions and accuracy.

The evaluation results for each class are listed in Table 1. These classes
were generally classified with high accuracy. Floor and ceiling exhibited
distinct geometric features, achieving high IoU scores of 0.9393 and 0.8706,
respectively, and high accuracy scores of 0.9744 and 0.9297, respectively.
The table class scored slightly lower, with an IoU of 0.7502 and accuracy of
0.8391, owing to its shape diversity. The wall class achieved an IoU of 0.8084
and accuracy of 0.9178. Based on these results, we constructed autoencoders
for each class to perform feature extraction and reconstruction.

Table 1: Intersection over union (IoU) and
accuracy of semantic segmentation for
each target class.

Class IoU Accuracy

Wall 0.8084 0.9178
Ceiling 0.8706 0.9297
Floor 0.9393 0.9744
Table 0.7502 0.8391

3D SHAPE RECONSTRUCTION USING AN AUTOENCODER

Designing an Autoencoder

An autoencoder is a feature extraction algorithm that uses a neural network
to compress an input point cloud into a low-dimensional latent space
(encoding) and then reconstructs a point cloud similar to the input from that
feature vector (decoding). This mechanism is used in applications such as
image denoising, anomaly detection, clustering, and data generation.

In this study, we constructed a separate autoencoder for each class
identified by semantic segmentation (wall, ceiling, floor, and table). This was
performed to precisely extract the distinct geometric features of each class
and improve the reconstruction accuracy. The input to the autoencoder was
the coordinate information of the point cloud for each class, and the output
was reconstructed in the same format. The Chamfer distance (CD) was used
as a loss function to minimize the shape difference between the input and
output point clouds. The encoder used the PointNet network structure that
was designed to efficiently extract local and global geometric information
from each point.

PointNet

PointNet is a deep learning method for point clouds that accepts point-cloud
data as direct input. The 3D point clouds lack an inherent order or grid
structure for any of their data elements. As shown in Figure 3, even when
two points in the 3D point cloud are swapped, the overall shape of the
cloud remains unchanged. This type of data is referred to as out-of-order
data that is difficult to manage using traditional deep learning methods.
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PointNet addresses this challenge by introducing symmetric functions that
ensure that the output remains invariant to the order of the input data.
The PointNet architecture combines a shared multilayer perceptron (MLP)
and max pooling. In shared MLP, the same MLP is applied to each
point along the channel direction. Let f (p, θ ) (where p is a 3D point
and θ is a weight parameter of MLP) be a shared MLP. For example,
when a 3D point cloud (p1, p2, · · · , pi, · · · ,pn) is input, the output
is
(
f
(
p1
)

, f
(
p2
)

, · · · , f
(
pi
)

, · · · , f
(
pn
))

. Max pooling is then used to
aggregate features from all points in the point cloud, and this pooling
operation is applied channel-by-channel. Using the maximum value as the
pooling function, the result remains unchanged irrespective of the input
point order, ensuring that the output is independent of the point order. As
described, the combination of the shared MLP and max pooling generates
the same output irrespective of the point order, enabling the construction of
a symmetric function via a neural network. Figure 4 illustrates the network
structure.

Figure 3: Unordered 3D point clouds.

Figure 4: Symmetric function of PointNet.

Machine Learning Model Structure

The structure and hyperparameters of our machine learning model were
based on a PointNet-based autoencoder (Achlioptas et al., 2018). Figure 5
illustrates the model architecture. The input point cloud size was set to 4096
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points. The encoder consisted of three 1D convolutional layers, each followed
by a ReLU activation function. This convolutional operation used shared
weights across all the input points. Next, max pooling aggregated the global
features of the point cloud to obtain a feature vector. The decoder comprised
three fully connected layers, with the ReLU activation function applied to all
but the output layer. The model was trained to minimize the CD between
the input and output point clouds. A successful reconstruction, where the
input and output shapes matched, indicated that the feature extraction was
performed properly. For training, we used the CD as the loss function, the
Adam optimizer, a batch size of 16, and a learning rate of 0.001 for 50 epochs.

Figure 5: Structure of the autoencoder machine learning model.

EVALUATION OF 3D SHAPE RECONSTRUCTION

Evaluation Methods

To validate the effectiveness of the proposed method, we evaluated the 3D
shape reconstruction performed using a combined semantic segmentation
model and autoencoder. We used three types of data for evaluation:
(1) validation data from the ScanNet++ dataset, (2) test data from the
ScanNet++ dataset, and (3) real-world indoor point cloud data acquired
using 3D scanning. This allowed us to confirm not only the performance
on an existing dataset but also the generalization capability to real-world
environments. The real-world data were acquired using an iPad Pro (2nd
generation, Apple Inc.), equipped with a direct time-of-flight (dToF) LiDAR,
and the Scaniverse application. The dToF method measures the distance to
an object by detecting the flight time of light that allows the scanning of large
areas in a short amount of time. The acquired data were first meshed using
Scaniverse and then sampled into a point cloud for evaluation. The workflow
from scanning to sampling is illustrated in Figure 6.

For evaluation, we performed a qualitative assessment by visually
comparing the input and output point clouds. For a quantitative assessment,
we measured the distance error between the input and output point clouds
using two metrics: CD and Earth mover’s distance (EMD). These are defined
by the following equations (Achlioptas et al., 2018).
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CD(X1,X2) =
∑
x∈X1

min
ξ∈X2
‖x− ξ‖22 +

∑
x∈X2

min
ξ∈X1
‖x− ξ‖22 (1)

EMD(X1,X2) = min
φ:X1→X2

∑
x∈X1

‖x− φ(x)‖2 (2)

Here, X1 and X2 represent the point clouds that are assumed to have
the same number of points for the EMD calculation. Term φ represents
a bijection from X1 to X2, and ‖ · ‖2 denotes the R3 Euclidean distance.
The CD is suitable for evaluating the overall shape reproducibility—that is,
the extent to which the reconstructed shape matches the original—because
it calculates the sum of distances from each point in one point cloud to
the nearest point in the other point cloud. In contrast, the EMD excels at
rigorously evaluating the similarity of point distributions and density by
considering the optimal correspondence between the clouds. In this study,
we performed a multifaceted accuracy verification using the CD to evaluate
global shape reproducibility and complementarily using the EMD to assess
correspondence at the point distribution level.

Figure 6: Flow from acquisition to sampling of indoor spatial point cloud data.

Evaluation Results

We performed qualitative and quantitative evaluations to validate the
effectiveness of the proposed method.

For a qualitative evaluation, visual comparisons of the reconstruction
results are shown in Figures 7–9. For the validation data (Figure 7), fine
details were accurately reproduced, and an extremely high reconstruction
accuracy was confirmed. However, for the test (Figure 8) and real-world data
(Figure 9), point scattering was observed, and the reconstruction accuracy
was limited. However, compared with our prior work that did not use
semantic segmentation (Miki et al., 2025), the basic shape of the objects was
preserved, demonstrating the improvement of the proposed method.

The results of the quantitative evaluation are presented in Table 2 and
Figure 10. The CD for the validation data (4.23 × 10−4) was approximately
five times better than that for the test data (21.1 × 10−4), a result that
correlated with the visual evaluation. In contrast, the EMD showed a
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counterintuitive result, with the test data (0.191) scoring better than the
validation data (0.316). This trend was similar for the wall, floor, and table
classes, with only the ceiling class exhibiting a significantly lower EMD value
(Figure 10). The discrepancies in these trends between the metrics and classes
are analyzed in detail in the next section.

Figure 7: Reconstruction result for the validation data.

Figure 8: Reconstruction result for the test data.

Figure 9: Reconstruction result for the real-world scanned data.

Table 2: Quantitative comparison of the 3D shape
reconstruction.

Validation Test

Number of Instances 12 50
CD (×10−4) 4.23 21.1
EMD 0.316 0.191
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Figure 10: Earth mover’s distance (EMD) evaluation results per class.

DISCUSSION

This section discusses the effectiveness, challenges, and future prospects of the
proposed method based on the evaluation results presented in the previous
section.

Discussion of Qualitative Results

The visual comparison results suggested that the proposed method had
significant potential for structural reconstruction of indoor scenes. In
particular, for the validation data from ScanNet++, large-scale structures
that defined the space, such as walls, floors, and ceilings, were reconstructed
with a high fidelity that they were nearly indistinguishable from the input
point cloud. This indicated that the strategy of training an autoencoder for
each semantic class effectively extracted and represented the global geometric
features inherent to each class.

However, the results for the test and real-world data revealed several
challenges in terms of reconstruction accuracy. In the test and real-world
data, noise-like points were scattered around the objects, indicating that
the model did not fully generalize to shape variations that were not
included in the training data. The PointNet-based autoencoder aggregated
the features of an entire point cloud into a single global feature vector;
hence, fully preserving the local and fine-grained geometric information for
objects with diverse shapes within the same class was difficult. This could
cause information loss during decoding, contributing to point scattering.
Furthermore, a phenomenon was observed in which the parts that existed
as walls in the input data were missing from the output. As presented in
Table 1, the semantic segmentation accuracy was high, suggesting that the
introduction of post-processing steps such as noise removal and smoothing
after segmentation could be effective in preventing these defects. Additionally,
a tendency was observed for curved surfaces and complex irregularities in the
input point cloud to be reconstructed as flat surfaces. This was likely because
the current model learnt only from the coordinate information and did not
consider normal information (that is, surface orientation and curvature).

The results of this study suggested new potential applications. By limiting
the target classes of this method to walls, floors, and ceilings, indoor furniture
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such as tables and chairs could be intentionally excluded, and only the skeletal
structure of the space could be reconstructed. This could be a highly effective
approach for applications requiring only pure spatial structures, such as
creating digital twins of indoor spaces for architectural design or assessing
structures prior to renovation.

Discussion of Quantitative Results

The quantitative evaluation results corroborated the insights gained from the
qualitative assessment with objective numerical data while offering deeper
insights into the characteristics of the evaluation metrics. As presented in
Table 2, the CD results strongly correlated with the visual evaluation, and the
fact that the validation data were approximately five times better than the test
data clearly quantified the generalization challenge of the model. In contrast,
the EMD showed a counterintuitive trend in which the test data scored
better than the validation data. This was thought to be a statistical effect
arising from differences in the number and scale of instances in the datasets.
Specifically, because the validation data were evaluated for an average of
12 instances, a high EMD score from only a few difficult-to-reconstruct
instances significantly increased the overall average. By contrast, the test data
were evaluated on a larger set of 50 instances, making the overall average
less sensitive to the impact of a few instances with large errors. This was
considered the reason for the reversal phenomenon observed in the average
values.

Furthermore, as shown in Figure 10, a more detailed analysis was
possible by examining the EMD for each class. The ceiling class had a
significantly lower EMD than the other classes, indicating an extremely high
reconstruction accuracy. This was likely because ceilings generally had fewer
occlusions and were often simple flat surfaces; hence, the model could easily
learn their features. In contrast, the wall and floor classes had relatively
high EMD scores. This was presumed to be due to the higher complexity
and diversity of their shapes, as walls include features such as doors and
windows and floors were often partially hidden by furniture. This per-class
EMD analysis quantitatively confirmed that the reconstruction accuracy of
the proposed method was highly dependent on the simplicity and diversity
of the shape of the target object.

CONCLUSION

In this study, aiming for the automatic construction of virtual spaces that
reflected real-world geometry, we proposed a 3D shape reconstruction
method for indoor scenes using a PointNet-based autoencoder guided by
semantic segmentation. By segmenting a scene into semantic classes and
applying an optimized autoencoder to each class, we aimed for high-fidelity
reconstruction.

The evaluation results demonstrated that the proposed method
achieved visually accurate reconstructions and an extremely low CD
error (4.23 × 10−4) on validation data similar to the training set. This
result suggested that the proposed semantic-guided approach was effective,
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particularly for reproducing large-scale structures. However, challenges in
the generalization and local shape representation, such as increased CD
values and point scattering, were identified for unseen test and real-world
scan data. This was attributed to the structure of the PointNet-based
autoencoder that aggregated the features of the entire point cloud into a
single global feature vector. Furthermore, by applying the characteristics
of the method, the study demonstrated that by limiting the target classes
to walls, floors, and ceilings, furniture could be intentionally excluded and
only the skeletal structure of the space could be extracted. Additionally, this
study analyzed the phenomenon in which evaluation metrics CD and EMD
exhibited opposite trends and showed that this was a statistical effect arising
from the difference in the number of instances used for evaluation, rather
than a difference in the reconstruction quality.

In future work, we aim to improve the representation of local shapes, such
as curved surfaces, by adding the normal information of each point as an
input feature. We will also improve the robustness to real-world data by
applying noise removal and smoothing to the point cloud after segmentation.
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