

Threading the Future: Al, 3D Technology, and Human Skills in the Evolving Fashion Workforce

Jenifer Roberts and Sandra Bailey

Missouri State University, Springfield, MO 65897, United States

ABSTRACT

The fashion industry, once dominated by meticulous workmanship, now stands at the forefront of a technological revolution. Artificial intelligence (AI), automation, and 3D design tools are reshaping job roles, workflows, and educational demands. While concerns over job displacement persist, human creativity, ethical judgment, and adaptability remain irreplaceable. Digital tools such as AI-enabled trend forecasting and virtual prototyping provide faster and more sustainable design processes, though challenges such as carbon-intensive computing, equitable access, and creative authenticity remain. This paper explores the integration of human–technology collaboration in fashion through the lenses of emerging technological trends, workforce implications, and sustainability goals. Drawing on recent literature and real-world applications, it provides a roadmap for aligning fashion education, policy, and industry practices with the enduring values of creativity, equity, and environmental stewardship.

Keywords: AI, 3D, Fashion, Technology, Upskilling

INTRODUCTION

Human-Technology Collaboration in the Future of Fashion Work: Balancing Innovation, Sustainability, and Human Skills

The global fashion industry, valued at an estimated \$3 trillion, is both a cultural powerhouse and one of the world's most environmentally damaging sectors, contributing roughly 10% of global carbon emissions and significant water pollution (Abbate et al., 2024; World Economic Forum, 2020). Today, however, the sector is being reshaped by advanced technologies such as artificial intelligence (AI), automation, and digital design, alongside increasing sustainability initiatives (McKinsey & Company, 2020). This transformation extends beyond garment design and production to redefine the very nature of work within the industry. For instance, research into technology-integrated textiles demonstrates not only technical potential but also new avenues for artistic expression (Abbate et al., 2024).

The workforce itself is undergoing significant change as automation and AI alter job functions, required skills, and workplace structures. While some positions may be displaced, new opportunities are emerging that emphasize uniquely human strengths such as creativity, critical thinking,

empathy, and complex communication. In fashion, these dynamics are visible in the rise of 3D design tools, AI-optimized supply chains, and virtual product development. Together, these innovations reduce waste, streamline production, and create career paths that blend artistic sensibility with technical expertise.

The COVID-19 pandemic further accelerated these trends, pushing many companies to adopt digital solutions to maintain operations amid reduced physical contact. By integrating 3D software such as Browzwear and CLO, designers can now create garments entirely in a digital environment, test them on virtual avatars, and refine designs in real time—dramatically cutting costs, reducing environmental impact, and speeding up production cycles (Dou, 2024). This shift raises critical questions about the future of fashion work: How will roles and skills evolve in an increasingly automated industry? What measures are necessary to keep sustainability central to this transformation? And how can human creativity and ethical responsibility be preserved in an AI-driven design environment?

PURPOSE

The purpose of this paper is to explore how human—technology collaboration is shaping the future of work in the fashion industry, with particular attention to sustainability, workforce adaptation, and education. By examining current technological innovations, workforce implications, and the need for human-centered strategies, this paper provides a roadmap for aligning technological progress with the enduring values of creativity, environmental stewardship, and human skill development.

Research demonstrates that automation and AI create both opportunities and disruptions in the workforce. Brynjolfsson and McAfee (2014) argue that digital technologies are fueling unprecedented productivity growth while simultaneously displacing certain job categories. Similarly, Susskind and Susskind (2015) emphasize the diminishing role of traditional professional expertise as AI-driven systems increasingly handle tasks once reserved for highly trained individuals. Deloitte (2020) highlights the rise of "superjobs," in which technology augments human work rather than replaces it. Frey and Osborne's (2017) influential study estimated that up to 47% of U.S. jobs are at risk of automation, though subsequent research suggests that new opportunities may balance job losses.

In parallel, scholars have drawn attention to the ethical and social implications of AI. Pasquale (2020) critiques the opaque nature of AI decision-making, raising concerns about accountability, transparency, and fairness. Daugherty and Wilson (2018) stress the importance of *collaborative intelligence*, where humans and machines complement and extend one another's strengths. Bessen (2019) contributes evidence that while technology reshapes tasks, it frequently increases demand for human labor in complementary areas. Taken together, this literature underscores the complexity of predicting how work will evolve in an AI-driven era.

Within the fashion industry, these debates take on unique dimensions. While AI and 3D design tools enhance efficiency, sustainability, and speed-to-market, they also demand new skill sets that blend creative vision with data literacy and digital proficiency (Dou, 2024; Colombi & D'Itria,

2023). The emerging fashion workforce must adapt to hybrid roles that combine technical expertise with aesthetic sensibility, sustainability-driven innovation, and human judgment. As the industry evolves, professionals will need to master advanced digital tools while retaining capabilities that machines cannot replicate—empathy, ethical decision-making, and cultural sensitivity.

TECHNOLOGY ADOPTION IN THE FASHION INDUSTRY

Over the past decade, the fashion industry has undergone a profound transformation in its relationship with technology. Innovations once regarded as optional enhancements—such as digital prototyping or AI-driven forecasting—are now embedded into daily operations. This shift is primarily motivated by three factors: growing sustainability imperatives, the demand for greater efficiency, and the need to remain competitive in a rapidly evolving consumer marketplace.

3D Digital Design Tools

One of the most impactful advancements has been the rise of 3D garment design software. Platforms such as Browzwear, CLO 3D, and Optitex enable designers to conceptualize, construct, and refine garments entirely in virtual environments. Unlike traditional workflows, which depend heavily on physical samples and fittings, 3D design offers real-time visualization and instant modifications. This approach reduces material waste, shipping costs, and development time while also improving communication between design teams and manufacturers (Dou, 2024).

For example, Browzwear's VStitcher platform allows designers to produce photorealistic garments on customizable digital avatars. The software simulates draping, measurements, and fabric physics, enabling teams to assess fit and movement before producing a single physical sample. This capability not only minimizes the environmental footprint but also enhances collaboration among geographically dispersed teams—a trend that accelerated during the COVID-19 pandemic (How AI, 2024).

Artificial Intelligence in Fashion

Artificial intelligence is increasingly embedded across the fashion value chain. Trend forecasting platforms such as Heuritech and Edited employ machine learning to analyze millions of online images, videos, and articles. By identifying patterns in color palettes, silhouettes, and materials, these systems generate insights that allow brands to align production more closely with consumer demand. This alignment reduces overproduction, one of the industry's largest sources of waste (Sinha & Lee, 2024).

AI also enhances personalization in e-commerce. Companies like Stitch Fix leverage algorithms that consider customer preferences, style profiles, and purchase histories to deliver tailored product recommendations. By

optimizing inventory to customer needs, these systems decrease unsold stock and return rates, boosting both profitability and sustainability (Vogue Business, 2025).

Industry Case Studies

Several leading fashion companies illustrate the breadth of technological adoption across the industry:

- Nike employs 3D design to streamline product development, accelerating go-to-market strategies and reducing reliance on physical prototypes.
- Gucci has pioneered digital-only collections on platforms such as Roblox and Zepeto, showcasing the potential of fashion that generates no physical waste.
- **H&M** integrates AI-driven tools into its supply chain to forecast demand, reducing overproduction and limiting the need for clearance sales.

These examples highlight how digital transformation is reshaping both luxury and mass-market fashion. While adoption levels vary according to company size, resources, and strategic focus, it is evident that digital technologies are no longer optional but essential for competitiveness and long-term sustainability.

HUMAN-TECHNOLOGY COLLABORATION AND WORKFORCE IMPLICATIONS

The integration of automation and AI into the fashion industry has prompted widespread discussions about its impact on employment. While fears of job displacement are not unfounded, a closer examination reveals that technology is not simply replacing workers, it is transforming the skillsets required and creating entirely new categories of employment. The shift toward human-technology collaboration highlights the importance of reskilling, adaptability, and maintaining uniquely human contributions in an increasingly digital landscape.

Job Displacement vs. Job Creation

Automation has reduced the demand for certain manual roles, particularly in pattern cutting, sample production, and quality inspection. Tasks once performed by hand—such as fabric layout optimization—can now be handled more quickly and accurately by AI-powered systems (Choi, 2022). This displacement is most visible in mass production facilities, where repetitive tasks are highly automatable.

Conversely, the rise of 3D garment design, virtual sampling, and AI-driven merchandising has created demand for roles such as digital garment technologists, 3D visualization specialists, virtual fit engineers, and fashion data analysts. These emerging roles require a blend of design sensibility, software proficiency, and data literacy—skills that were rarely combined in traditional fashion careers.

The Evolving Skill Set

Success in this new environment demands a hybrid skill set.

- Technical skills: Proficiency in design software like Browzwear, CLO 3D, and Adobe Substance 3D; understanding of AI tools for product development, trend forecasting and supply chain analytics.
- Creative skills: The ability to conceptualize designs that work both in physical and digital contexts, often with sustainability in mind.
- Interpersonal skills: Cross-functional collaboration across creative, technical, and business teams in remote or hybrid work environments.

Importantly, technology cannot replace the nuanced human decision-making required in certain aspects of design. For example, understanding the cultural significance of a garment, the emotional appeal of a collection, or the ethical implications of production choices still requires human judgment.

Education and Workforce Preparation

Fashion education programs are under increasing pressure to adapt curricula to the industry's digital transformation. Traditionally, fashion design courses emphasized manual techniques, garment construction, and textile knowledge. While these remain essential, universities must now integrate courses on 3D design, AI applications in product development and retail, digital supply chain management, and sustainability analytics.

Some forward-thinking institutions, such as the Fashion Institute of Technology (FIT) in New York and London College of Fashion, have introduced digital fashion programs that blend traditional design with cutting-edge technology. However, adoption is far from universal, and many graduates still enter the workforce without the necessary technical fluency. Industry partnerships with software companies, such as Browzwear's academic licensing program, offer a pathway to close this gap.

Human-Machine Collaboration as the Norm

The future of fashion work is not about choosing between humans and machines; it is about designing workflows in which each complements the other. AI can handle large-scale data processing, repetitive design adjustments, and predictive analytics, while humans contribute creativity, emotional intelligence, and ethical oversight. Companies that foster this collaborative mindset are better positioned to innovate sustainably and remain resilient in a rapidly changing market.

CHALLENGES AND ETHICAL CONSIDERATIONS

While automation, AI, and digital tools offer significant opportunities for innovation and sustainability in the fashion industry, their integration also raises complex challenges. These range from questions of equitable access to technology and potential labor displacement to concerns about sustainability trade-offs and the ethical use of AI in creative processes. Addressing these

issues is critical to ensuring that technological advancement aligns with industry values and social responsibility.

The Sustainability Paradox

One of the primary promises of 3D digital design and AI in fashion is to reduce environmental impact. By eliminating the need for multiple physical samples and enabling more accurate demand forecasting, these tools can decrease textile waste and carbon emissions. However, digital fashion production is not without its own environmental costs (The Guardian, 2024). Cloud computing, server hosting for 3D rendering, and high-powered design hardware require substantial energy consumption. Without renewable energy infrastructure, the shift to digital workflows may simply shift the environmental burden from material waste to carbon-intensive computing (Niinimäki et al., 2020).

Furthermore, the ease of creating virtual garments has led to concerns about digital overproduction. While virtual clothing for marketing or metaverse platforms does not consume physical resources, the proliferation of designs can perpetuate fast fashion's "more is more" mentality—now in a digital form.

Access and Equity in Technology Adoption

Advanced design software, AI analytics platforms, and virtual fitting tools require substantial financial investment, which can be prohibitive for small and independent fashion brands. As a result, there is a risk of technological stratification, in which only large corporations can afford to adopt cutting-edge tools, widening the gap between them and smaller players. This disparity could stifle innovation from independent designers and limit diversity in the marketplace.

To address this, some technology providers have begun offering tiered subscription models or educational discounts, but broader initiatives—such as open-source design platforms or government-supported innovation grants—may be necessary to ensure equitable access.

Labor Displacement and Workforce Transition

Automation can displace workers in manufacturing, logistics, and even certain creative roles. While new positions in digital design and data-driven merchandising are emerging, the transition is not seamless. Workers displaced by traditional roles may lack the digital skills required for these new opportunities, leading to unemployment or underemployment.

This underscores the importance of upskilling initiatives; collaborations between industry, educational institutions, and governments to provide accessible training programs. Without proactive measures, technological progress could exacerbate socioeconomic inequality in an industry already marked by significant labor imbalances.

Ethical Concerns in Al-Generated Design

AI's ability to generate designs based on massive datasets raises concerns about originality, authorship, and intellectual property. If an AI tool is trained on copyrighted works or culturally significant garments without permission, the resulting designs may unintentionally infringe on creative rights or appropriate cultural heritage (Sinha & Lee, 2024).

There is also the question of creative authenticity. As AI becomes more capable of mimicking human design styles, consumers and designers alike may question the value of human-made work. Clear guidelines and ethical frameworks are needed to govern how AI is trained, how credit is assigned, and how cultural elements are represented in fashion design.

FUTURE DIRECTIONS AND RECOMMENDATIONS

As automation and AI continue to reshape the fashion industry, the challenge lies in ensuring that these technological advances serve both human and environmental needs. Building a sustainable, inclusive, and creative future for fashion requires coordinated action across industry, education, and policy sectors. The following recommendations provide a roadmap for navigating this transformation.

Emphasize Human-Centered Technology Design

Technology adoption in fashion should be guided by the principle of augmenting rather than replacing human creativity. Tools such as 3D garment software, AI product development, trend forecasting, and automated patternmaking should be designed to enhance designers' capabilities rather than impose rigid, machine-driven processes (Sustainability Directory, 2025). Engaging end-users—designers, patternmakers, merchandisers in the development of these tools can ensure that they are intuitive, flexible, and adaptable to different creative workflows.

Integrate Digital Skills into Fashion Education

Educational institutions must play a central role in preparing the future workforce. This involves:

- Embedding 3D design, AI literacy, and data analytics into core curricula alongside traditional skills such as pattern making and garment construction.
- Partnering with technology companies to provide students with access to industry-standard tools and mentorship from professionals working in digital fashion roles.
- Encouraging interdisciplinary learning, where fashion students collaborate with computer science, engineering, and business students to simulate real-world, cross-functional projects.

Such integration will help graduates transition seamlessly into technologically advanced workplaces while maintaining the creative and cultural competencies that define fashion as an art form.

Promote Equitable Access to Technology

To prevent a digital divide in the fashion industry, access to technological tools must be democratized. Small brands, independent designers, and underresourced educational programs should be supported through:

- Open-source design platforms and community-driven innovation hubs.
- Public-private partnerships offering grants, subsidies, or shared-use facilities for advanced digital equipment.
- Tiered pricing models from software providers that accommodate emerging designers and startups.

This inclusivity not only ensures diversity in design perspectives but also fosters innovation across all market levels.

Implement Ethical Frameworks for AI in Fashion

Clear policies are needed to address the legal and ethical challenges of AIgenerated fashion. These should include:

- Transparency in training datasets to ensure that cultural heritage and copyrighted designs are not used without consent.
- Fair attribution models that recognize the contributions of both human designers and AI systems.
- Guidelines for cultural representation that prevent appropriation and promote respectful, collaborative design approaches.

Such frameworks can protect creative rights while encouraging responsible innovation.

Foster Lifelong Learning and Workforce Resilience

The rapid pace of technological change means that workforce readiness cannot be a one-time achievement. Industry leaders should cultivate a culture of lifelong learning through:

- Continuous professional development programs.
- Online training modules are accessible to both current employees and freelance professionals.
- Internal mobility pathways, allowing workers to transition into new roles as technology evolves.

By supporting career adaptability, companies can retain talent while preparing for future technological disruptions.

CONCLUSION

The integration of advanced technologies such as AI, 3D design tools, and automated manufacturing is not merely reshaping the operational mechanics of the fashion industry; it is redefining the very nature of work, creativity, and collaboration within it. While these innovations promise efficiency, sustainability gains, and unprecedented design possibilities, they also present

challenges related to skills displacement, ethical considerations, and equitable access.

This paper has highlighted the critical need for a human-centered approach in shaping the future of fashion work. Technology should function as a creative partner rather than a replacement for human ingenuity. The sector's future will depend on its ability to balance automation with artistry, ensuring that the speed and scale offered by machines do not come at the cost of cultural depth, craftsmanship, or designer autonomy.

The transition to a digitally integrated fashion industry requires proactive adaptation in education, where curricula must prepare students for hybrid creative-technological roles; in the workplace, where upskilling and lifelong learning will become essential; and in policy, where ethical and equitable frameworks will guide responsible innovation. In each of these domains, collaboration between educators, industry leaders, technology developers, and policymakers will be vital.

The future of work in fashion will not be determined solely by the tools we adopt, but by the values and priorities we embed into their use. If guided by principles of inclusivity, sustainability, and respect for human creativity, technology can become a powerful ally in shaping a fashion industry that is not only more efficient but also more innovative, culturally rich, and socially responsible (Colombi & D'Itria, 2023). The question is not whether technology will transform fashion—it already has—but whether we will shape that transformation in a way that serves both people and progress.

REFERENCES

- Abbate, S., Ruggiero, L., De Nisco, A., Del Gaudio, G., & D'Auria, G. (2024). In need of a sustainable and just fashion industry: Identifying challenges and opportunities through a systematic literature review in a global north–global south perspective. The Journal of Corporate Responsibility and Leadership, 2(1), 1–32.
- Bessen, J. (2019). Automation and jobs: When technology boosts employment. Economic Policy, 34(100), 589–626. https://doi.org/10.1093/epolic/eiaa001.
- Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
- Choi, K.-H. (2022). 3D dynamic fashion design development using digital technology and its potential in online platforms. *Fashion and Textiles*, 9(9). https://doi.org/10.1186/s40691-021-00286-1.
- Choi, T. M., & Cai, Y. J. (2020). Impacts of lead time reduction on fabric sourcing in apparel production with yield and environmental considerations. Annals of Operations Research, 290(1), 521–542. https://doi.org/10.1007/s10479–018-2838–7.
- Colombi, C., & D'Itria, E. (2023). Fashion digital transformation: Innovating business models toward circular economy and sustainability. Sustainability, 15(6), 4942. https://doi.org/10.3390/su15064942.
- Daugherty, P. R., & Wilson, H. J. (2018). Human + machine: Reimagining work in the age of AI. Harvard Business Review Press.
- Deloitte. (n.d.). Human capital trends. Deloitte Insights. Retrieved August 27, 2025, from https://www.deloitte.com/us/en/insights/topics/talent/human-capital-trends.html.

Dou, Y. (2024). Digital transformation in fashion: The role of 3D technologies in sustainable product development. International Journal of Fashion Design, Technology and Education, 17(1), 45–58. https://doi.org/10.1080/17543266.2023.2265487.

- Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerization? Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019.
- McKinsey & Company. (2020, November 17). Global survey: The state of AI in 2020. https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2020.
- McKinsey & Company, & The Business of Fashion. (2022, November 30). The state of fashion 2023: Holding onto growth as global clouds gather. https://www.mckinsey.com/~/media/mckinsey/industries/retail/our%20insights/state%20of%20fashion/2023/the-state-of-fashion-2023-holding-onto-growth-as-global-clouds-gathers-vf.pdf.
- Niinimaki, K., Peters, G., D'Adamo, I., & Lupi, G. (2020). *The environmental price of fast fashion*. https://www.researchgate.net/publication/340635670_The_environmental_price_of_fast_fashion.
- Pasquale, F. (2020). New laws of robotics: Defending human expertise in the age of AI. Harvard University Press. https://doi.org/10.2307/j.ctv3405w6p.
- Sinha, S., & Lee, Y. M. (2024). Challenges with developing and deploying AI models and applications in industrial systems. Discover Artificial Intelligence, 4(55). https://doi.org/10.1007/s44163-024-00151-2.
- Susskind, R., & Susskind, D. (2015). The future of the professions: How technology will transform the work of human experts. Oxford University Press. https://doi.org/10.1093/oso/9780198713395.001.0001.
- Sustainability Directory. (2025, April 14). The future of human creativity in AI augmented fashion design. Prism. https://prism.sustainability-directory.com/scenario/the-future-of-human-creativity-in-ai-augmented-fashion-design/.
- The Guardian. (2024, May 30). Legislation, AI and the Ganni playbook: 10 takeaways from the Super Bowl of sustainable fashion. The Guardian. https://www.theguardian.com/fashion/article/2024/may/30/legislation-ai-and-the-ganniplaybook-10-takeaways-from-the-super-bowl-of-sustainable-fashion.
- Time. (2024, September 20). How AI could transform fast fashion for better—and worse. Time. https://time.com/7022660/shein-ai-fast-fashion/.
- United Nations Climate Change (UNFCCC). (2018). Fashion industry charter for climate action. https://unfccc.int/climate-action/sectoral-engagement-for-climate-action/fashion-charter.
- Vogue Business. (2025, August 26). The Vogue Business AI tracker: Navigating the cutting edge of AI in fashion & strategy. Vogue Business. https://www.voguebusiness.com/story/technology/the-vogue-business-ai-tracker.
- World Economic Forum. (2020, October 20). Emissions have fallen. Now we need to make it permanent. https://www.weforum.org/stories/2020/10/emissions-have-fallen-this-year-make-permanent.