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ABSTRACT

Transport accident investigations are crucial for understanding causal factors, improving
system safety, and preventing future incidents. Traditionally, these investigations rely on
a multidisciplinary process involving human expertise, manual data analysis, and narrative
reconstruction. However, with the growing complexity of transportation systems and the
increasing volume of operational data—from flight data recorders, cockpit voice recordings,
sensor logs, to surveillance systems—the limitations of manual analysis are becoming evident.
This paper explores the emerging role and potential of Artificial Intelligence (AI) in augmenting
and transforming transport accident investigations across aviation, maritime, rail, and roadway
domains. AI technologies such as machine learning, natural language processing (NLP), and
computer vision are proving to be powerful tools in extracting patterns, identifying anomalies,
and drawing correlations from large datasets that are otherwise time-consuming and error-
prone for human analysts. This paper examines several case studies and research projects
where AI-assisted tools have been piloted or implemented in post-accident analysis. These
include automated speech recognition for cockpit voice recordings, anomaly detection in
flight trajectories, and sentiment analysis of maintenance logs. Findings indicate that AI can
significantly reduce investigation time frames, increase objectivity in evidence evaluation,
and uncover hidden contributing factors—particularly in cases involving complex system
interactions or human-machine interface failures. Despite its promise, the implementation of
AI in accident investigations is not without challenges. One critical concern is transparency
and explainability. Unlike traditional analytical methods, AI models—especially deep learning
systems—can function as “black boxes,” making it difficult for investigators, regulators, and
courts to interpret how a conclusion was reached. This raises questions about the admissibility of
AI-generated evidence and its alignment with legal and ethical standards in safety investigations.
The paper emphasizes the need for human-in-the-loop approaches where AI augments, rather
than replaces, expert judgment. Human oversight remains essential in contextual interpretation,
ethical reasoning, and final decision-making. Furthermore, the integration of AI into accident
investigation agencies requires cultural and organizational shifts. Investigators need training
not only in technical AI tools but also in data literacy, interdisciplinary collaboration, and
understanding the biases that AI models may inherit from their training data. This paper proposes
a roadmap for implementation, including phased adoption, validation protocols, inter-agency
cooperation, and regulatory support. In conclusion, AI has the potential to revolutionize transport
accident investigations (Ziakkas & Plioutsias, 2024) by enhancing speed, depth, and predictive
capability. However, its integration must be guided by principles of transparency, accountability,
and collaboration between technologists and human factors experts. As transportation systems
evolve toward greater automation and data dependence, leveraging AI in accident investigations
is not only beneficial but essential for ensuring the continued integrity and learning capacity of
safety-critical systems.
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INTRODUCTION

Accident investigation has always been a challenge in disciplined research.
The investigator’s work—assembling fragments of evidence into a coherent
narrative of how a system drifted into failure—depends on technical acumen
and human insight in equal measure. For aviation, Annex-style principles
codified this stance: independence from blame-seeking, rigorous data
preservation, structured reporting, and recommendations aimed at systemic
improvement rather than retribution. While modalities differ, the same
ethos underwrites inquiries at sea, on rail, and on roads. Today, however,
investigators confront an epistemic challenge: the data they must honor has
multiplied in kind and in quantity, and the subtlety of human-automation
interaction has outpaced paper-era methods. A modern event may involve
highly automated control systems, opaque software states, conflicting sensor
interpretations, and multinational teams whose communication practices are
shaped by culture. The result is a data landscape that is both richer and more
refractory to manual analysis.

Longstanding human factors frameworks provide a compass. Reason’s
organizational accident theory (Reason, 1997) and the Swiss cheese (Reason,
1997) metaphor remind us that failure is rarely the property of a single act; it
is the alignment of latent conditions and active breakdowns. Human Factors
Analysis and Classification System (HFACS) added hierarchical structure -
unsafe acts, preconditions, supervision, organizational influences - allowing
investigators to code how system and interpersonal factors link (Wiegmann
& Shappell, 2003). Line Operations Safety Audit (LOSA), as a non-jeopardy
observational method, taught us to see threats, errors, and undesired states in
normal line operations (Kanki, Anca, & Helmreich, 2010). Crew Resource
Management (CRM) (Kanki, Anca, & Helmreich, 2010; Helmreich, Merritt,
& Wilhelm, 1999) and, more recently, Competency-Based Training &
Assessment (CBTA) (ICAO, 2013)/Evidence-Based Training (EBT) moved
training and assessment toward observable behavior under real constraints.
These frameworks are not obsolete in an AI era; they are the grammar
through which algorithmic signals can become operational meaning.

At the same time, cultural dynamics in multinational operations
complicate what is “in the data.” Speech acts captured on cockpit voice
recordings are not mere words; they carry pragmatics—directness, hedging,
facework (Gudykunst, 2002)—that vary across cultural communities. Silence
can be deference rather than agreement; formal politeness may mark dissent
as much as assent. Without cultural fluency, algorithmic summaries of
audio transcripts or sentiment signals from narratives risk misclassification.
Cultural Intelligence (CQ) (Ang & Van Dyne, 2008), introduced to aviation
as a teachable competence, provides a lens for interpreting communication
and authority gradients (Helmreich & Merritt, 1998; Altemeyer, 1996)
without stereotyping. It is therefore as relevant to AI assisted investigations
as it is to training: outputs must be read with sensitivity to the people who
produced them.
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The case for AI in investigations is pragmatic. First, time is a critical
controlling factor. Public accountability, regulatory deadlines, and the
opportunity to prevent recurrence hinge on reducing time-to-insight without
sacrificing depth. Second, the kinds of structure investigators seek—temporal
sequences, outliers, recurring patterns of interaction—are precisely the sorts
of patterns statistical learning can surface rapidly when data are well curated.
Third, the fidelity and diversity of modern data (high-rate FDR parameters,
multi-channel audio, surveillance video, digital maintenance logs) suit multi-
modal models that can synchronize evidence across streams. Yet the promise
is bounded by legitimate concerns: transparency, replicability, chain-of-
custody, and admissibility. If an algorithm cannot show its working, it cannot
earn the trust of investigators, regulators, or courts. The way forward, then, is
not to mechanize judgment but to instrument judgment—to place defensible
AI components inside an investigative workflow that remains human-led and
just-culture aligned.

This paper proceeds in that spirit. It offers a methodology for integrating
AI into investigation without abandoning the conceptual rigor of established
frameworks. It then reports practice-grounded findings on where AI delivers,
where it distorts, and how to design guardrails. Finally, it sets out a roadmap
for organizational adoption that emphasizes investigator competence, cross-
agency collaboration, and cultural literacy as conditions for success. The
argument is intentionally cross-modal: while examples lean on aviation,
the methodological seams are shared across maritime, rail, and roadway
domains.

METHODOLOGY

The study adopts an interpretivist, translational methodology: the goal
is not to build one monolithic model but to specify how AI can be
responsibly inserted into the investigator’s craft. The approach braided three
strands—framework alignment, AI task mapping, and governance design—
each iterated with reference to established safety methods and regulatory
expectations (Table 1).

Table 1: Research methodology overview.

Methodology Purpose / Techniques Key Findings Implications for
Practice

Framework
alignment

Map AI outputs to
trusted HF
frameworks
(Reason/Swiss-
cheese; HFACS;
LOSA; CRM/CBTA);
identify analysis
junctures where data
volume/complexity
slows human
reasoning.

Faster convergence
on shared mental
models under time
pressure; earlier
visibility of
threat–error patterns
aligned to existing
categories.

Use explicit
paraphrase/summary
markers in CBTA;
brief to surface
cultural expectations;
use AI outputs as
structured evidence
linked to
HFACS/LOSA codes.

Continued
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Table 1: Continued

Methodology Purpose / Techniques Key Findings Implications for
Practice

AI task mapping ASR + speaker
diarization for CVR;
temporal alignment
with FDR;
unsupervised
anomaly detection
for trajectories/-
parameters; NLP on
logs/statements;
computer vision for
video; multimodal
fusion.

Reduced
time-to-insight;
earlier recognition of
automation surprise
& workload spikes;
contradictions
surfaced across
narratives; video
indexing clarified
task/sequence
disputes.

Treat model outputs
as triage and
hypothesis
generators; maintain
human review at all
decision points.

Governance design Chain-of-custody
artifacts (versioned
code, data hashes,
configs, inference
logs); explainability
(attention/salien-
cy/exemplars);
qualified human
reviewer gates.

Increased trust,
reproducibility, and
legal defensibility;
smoother
regulator/court
interactions.

Require model cards
and replayable
analyses; make audit
artifacts part of the
evidence file.

CQ guardrails for
NLP/audio

CQ-informed
prompts; validate
assertive-
ness/indirectness
metrics against
cultural context; bias
checks on prosody
and stance models.

Reduced
misinterpretation and
bias; fewer
authority-gradient
failures without
flattening leadership.

Add CBTA markers
that assess inviting
dissent and culturally
adaptive debriefing;
train reviewers on
CQ for transcript
interpretation.

Knowledge-graph
fusion

Entity/event graph
with timestamps,
typed edges, and
confidence; supports
narrative rehearsal
and Bayesian
updating.

Shared situational
awareness;
transparent
enumeration of
evidence supporting/-
contradicting
hypotheses.

Use graphs to
organize competing
narratives and
maintain provenance
with click-through to
sources.

Organizational
upskilling

CBTA-based
data-literacy
curriculum;
just-culture
protections;
competence
assessment via
realistic cases.

Higher adoption;
reduced resistance to
AI; improved
investigator ability to
interrogate models.

Define observable
competencies (read
model cards,
interpret confidence,
spot overfitting);
assess transfer on live
files.

Continued
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Table 1: Continued

Methodology Purpose / Techniques Key Findings Implications for
Practice

Inter-agency
collaboration

Shared model
repositories;
anonymized
benchmarks;
common validation
protocols; regulator
guidance.

Improved
generalization and
reduced duplication;
clearer admissibility
thresholds for
AI-assisted evidence.

Endorse
documentation
standards; fund
cross-modal pilots;
include
sociolinguists/cultural-
psychology in
debiasing work.

Framework alignment began with a close reading of mature investigative
grammars—Reason’s organizational view, HFACS’ layered taxonomy,
LOSA’s threat–error logic, and CRM/CBTA’s behaviorally anchored
assessment. For each, we identified analysis junctures where data volume
or complexity typically slows human reasoning: spanning, for example,
the transcription and diarization of cockpit audio, the sifting of high-rate
parameter streams for salient anomalies, and the aggregation of unstructured
narratives across witness statements andmaintenance records. These pressure
points became candidates for AI assistance precisely because they are
repetitive, pattern-centric, and auditable. The alignment step ensured that any
algorithmic output could “attach” meaningfully to categories investigators
already trust (e.g., HFACS preconditions; LOSA threat management; CRM
communication markers).

AI task mapping then articulated specific model classes to investigative
tasks. Automated speech recognition and speaker diarization were
mapped to CVR/bridge audio, with domain-tuned language models
trained on aviation/maritime lexicons to reduce out-of-vocabulary error;
temporal alignment reconciled transcripts with flight data recorders (FDR)
and surveillance timelines. For trajectories and high-rate parameters,
unsupervised anomaly detection (e.g., clustering, density estimation) and
sequence models supported the identification of outlying regimes preceding
undesired states. Natural language processing (NLP) pipelines (tokenization,
topic modeling, contradiction detection) were tied to maintenance logs
and narrative statements to surface recurrent themes, inconsistencies, and
sentiment shifts. Where video existed, computer vision pipelines performed
detection and re-identification to reconstruct ground movements. A multi-
modal fusion step—implemented conceptually as a knowledge graph—
bound entities (aircraft, systems, actors, messages) and events (mode
transitions, messages, alerts) with timestamps and confidence, providing a
substrate for causal reasoning, whether qualitative (narrative synthesis) or
quantitative (Bayesian updating).

Governance design addressed legitimacy: chain-of-custody,
reproducibility, explainability, and human-in-the-loop controls. Every
model stage was paired with an audit artifact (versioned code, data hashes,
configuration manifests, and inference logs) so that third parties could replay
analyses. Explainability depended on choosing model forms that admitted
reasons: attention maps over audio for contested utterances, saliency over
parameters for flagged anomalies, exemplar retrieval for NLP classifications.
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Critically, every AI output was routed to a qualified reviewer—an investigator
trained in both the operational domain and data literacy—who could accept,
reject, or annotate the claim. This governance was anchored in just-culture
and CBTA principles: the aim is learning, not blame, and competence must
be observable and assessed. Furthermore, the method was stress-tested
against cross-cultural communication scenarios to ensure that AI did not
smuggle cultural bias into evidentiary narratives. For example, assertiveness
metrics from transcripts were validated against CQ-informed interpretations
so that indirect speech or polite mitigation strategies were not misread as
absence of dissent. Investigators were supplied with prompts and checklists
derived from CQ training materials to contextualize transcript snippets
before drawing inferences about crew dynamics. In effect, CQ served as the
interpretive guardrail for NLP-assisted audio analysis (Ziakkas et al., 2024).

The methodology thus does not claim novelty at the level of algorithms;
it claims fitness for investigative purpose. It sets out where AI’s pattern skills
match the structure of the work, and how to keep the human investigator
sovereign over meaning, ethics, and recommendations.

FINDINGS

The first finding is expected: time-to-insight can be materially
reduced without diluting rigor when AI is positioned as an evidence triage
and structuring companion. In several investigations, automated speech
recognition with speaker diarization decreased the latency between raw audio
and usable transcripts from weeks to days. More importantly, diarization
exposed conversational turn-taking and interruptions that manual reviewers
routinely under-code when fatigued. Coupled with temporal alignment to
FDR events, investigators could see when an alert tone masked a soft-spoken
challenge or when a checklist invocation overlapped with ATC transmissions.
When these signals were read through CRM and CBTA lenses, evaluators
could distinguish between absence of challenge and challenge unheard, a
distinction with different training and design implications.

Second, unsupervised anomaly detection over trajectories and parameter
streams proved especially valuable in complex events where mode transitions
and pilot intent were in tension. Clustering revealed “families”of approaches
or climbs that departed from a fleet’s typical dispersion; density estimation
highlighted sequences rarely observed in benign operations. Investigators
used these patterns as hypothesis generators, not conclusions: the algorithm
said, “look here,” and human analysts asked, “why now?” In several cases,
this led to earlier recognition of automation surprises and of workload spikes
where standard calls compressed and cross-monitoring thinned. These are
the very seams HFACS would later code as preconditions for unsafe acts; AI
simply made them easier to see early (Ziakkas et al., 2024).

Third, NLP over maintenance logs and narrative
statements uncovered latent contradictions at scale. Topic models clustered
repeated complaints about intermittent sensors that individual case readers
had treated as noise. Contradiction detection flagged witness statements
that diverged sharply on timing or content, prompting targeted follow-up.
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While sentiment analysis is often caricatured, in safety narratives its value
lies less in emotion detection than in stance mapping: who minimizes, who
problematizes, and how these stances correlate with organizational role.
When paired with organizational-influence layers in HFACS, such patterns
sharpened recommendations from the vague (“improve reporting culture”)
to the actionable (“revise acceptance test criteria; add fatigue-aware sign-off
windows”).

Fourth, computer vision contributed meaningfully where surveillance
footage existed—on ramps, crossings, or bridge wings. Object detection and
re-identification reconstructed vehicle and person flows; pose estimation
suggested task allocation and potential procedural deviations. In a rail
yard incident, video-derived tracks clarified how an assumed hand signal
never occurred, resolving a dispute where two memory-based testimonies
were irreconcilable. The evidence was not “what the model said,” but the
underlying frames themodel helped index. That distinction proved critical for
legal defensibility: the machine accelerated retrieval; the human interpreted.

Fifth, a knowledge-graph fusion layer—even as a conceptual data
structure—helped investigators maintain coherence as they integrated
multi-modal outputs. By treating actors, systems, and events as nodes
connected by typed, time-stamped edges with confidence scores, teams
could rehearse competing narratives without losing data provenance. Such
graphs integrated naturally with Bayesian reasoning for updating belief in
hypotheses as new evidence accrued. The lived benefit was conversational:
teams could ask, “What supports the ‘automation surprise’ hypothesis?” and
the system could enumerate audio, parameter, and narrative links, each with
a click-through to source. This did not declare causation; it scaffolded shared
situational awareness among investigators.

These benefits hinged on explainability and reproducibility. Where models
were opaque or their outputs could not be re-run with frozen data and code,
investigators’ trust waned—and rightly so. Attention visualizations over
transcripts, saliency maps over parameters, and exemplar retrieval for text
classifications were the minimal currency of credibility. Just as importantly,
the audit trail—hashes of inputs, model versions, configuration files, and
action logs—was essential to chain-of-custody and to withstand judicial
scrutiny. Teams that treated these artifacts as part of the evidence file found
downstream interactions with regulators and courts markedly smoother.

The principal risks clustered around misinterpretation, bias, and
organizational culture. NLP systems trained on general English misread
mitigated speech from high context cultures as indecisive or “negative.”
Automated prosody-based stress inferences drifted across accents. Image
models struggled in adverse weather or with occlusions; trajectory clusters
sometimes reified rare but benign practices as suspicious. These were not
reasons to abandon AI; they were reasons to buffer it with CQ-aware human
review and to improve domain tuning. Culturally intelligent investigators
were better at catching algorithmic category errors because they recognized
that directness and dissent wear different clothes across communities.
Embedding CQ prompts in the transcript review interface—”Could this be
deference rather than agreement?”—reduced over-confident misreadings.
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Finally, the organizational challenge was less technical than pedagogical.
Investigators needed data literacy—not to become data scientists, but to
interrogate models with the same skepticism they apply to human testimony.
CBTA principles provided a ready scaffold for upskilling: define observable
competencies (e.g., ability to interpret confidence intervals; to spot overfitting
symptoms; to demand and read model cards); teach against realistic cases;
assess transfer on live files. Where agencies coupled training with just-
culture commitments, adoption prospered; where AI was perceived as a
surveillance tool to police investigator performance, resistance hardened. As
with CRM, legitimacy flowed from a clear line of sight to safer outcomes and
from leaders who modeled curiosity over certainty.

To summarize, AI did not change what an investigation is. It changed how
quickly and consistently certain kinds of structure become visible, and how
disciplined teams could test narratives against richer, synchronized evidence.
The craft remained human: weighing plausibility, interpreting culture, and
issuing recommendations with moral clarity.

CONCLUSION

The question is no longer whether AI has a role in transport accident
investigations; it is how to give it a legitimate one. The answer resides
in design choices that respect the moral architecture of investigation—
independence, transparency, fairness—and the epistemic humility of complex
systems work. The most important choice is to keep humans in the loop and
in charge, using AI to instrument rather than substitute judgment. That stance
honors the history of human-factors inquiry, from Reason’s systemic lens to
HFACS’ layered coding and LOSA’s observational discipline: we learn reliably
when we can see patterns, challenge them, and connect them to defensible
categories that guide prevention.

A practical roadmap begins with phased adoption. Agencies need not field
a monolith; they can start where returns are immediate and risk is low:
audio transcription and diarization tuned to operational lexicons; trajectory
clustering for exploratory analysis; contradiction detection over narratives.
Each insertion should be paired with validation protocols, model cards,
and audit artifacts from day one. As confidence grows, more ambitious
steps—multi-modal fusion, knowledge graphs, and causal modeling—can be
trialed under supervision. Throughout, explainability is not a luxury; it is
the affordance that allows an algorithmic claim to enter the community of
reasons.

The second element is competence. Investigators require a curriculum
that blends operational expertise with data literacy and cultural
intelligence. CBTA provides the architecture for defining and assessing
these competencies; CRM pedagogy offers the culture of practice in which
questioning is a duty, not a discourtesy. Training must teach not only how
to use tools but how to doubt them: to ask about class imbalance, dataset
shift, and the difference between correlation and cause; to recognize when an
NLP tag reflects accent rather than intent; to demand reproducibility before
acting. When competence is coupled with just-culture protections, adoption
sheds fear and takes on the energy of craft advancement.
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Third, inter-agency collaboration is a force multiplier. Shared model
repositories, anonymized benchmark datasets, and common validation
protocols reduce duplication and improve generalization. Regulators can
catalyze this by endorsing minimum documentation standards (model cards,
audit trails), by clarifying admissibility thresholds for AI-assisted evidence,
and by funding cross-modal pilots. Collaboration should extend beyond
technologists to include sociolinguists and cultural-psychology experts who
can help de-bias NLP and advise on cross-cultural interpretation of audio and
narrative sources. The benefit is not political optics but analytic integrity.

Fourth, cultural ergonomics will matter more as automation deepens. AI
systems participate in communication; their advisories and alarms have a
“style” that people receive through the filters of culture and training. If we
want investigators to reason well about human–automation breakdowns,
we must design and train with culture in mind—both in operations and in
analysis. CQ is the bridge: it equips professionals to read signals—human or
machine—with the charity and precision that safety deserves.

The research agenda is promising. We need multi-site, multi-modal studies
to quantify AI’s effect sizes on investigation timelines, hypothesis accuracy,
and recommendation quality. Additionally, we demand error taxonomies for
AI-assisted steps so that we can learn from model failures as we do from
human ones (body of case law and policy that treats AI outputs as evidence
under explanation, not as opaque assertions). Above all, we need to keep
the work human: investigations serve not only to explain mechanisms but
to honor losses with truth-seeking that is competent, fair, and teachable.
That decision remains with investigators who know that causality in complex
systems is a story we earn the right to tell—by listening, by testing, and by
learning under a human centric approach.
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