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ABSTRACT

This paper introduces Edge Fluent, a novel Environmental, Social, and Governance (ESG)-oriented
Internet of Things (loT) edge architecture designed to empower smallholder farmers in the agri-dairy
sector through inclusive artificial intelligence (Al). Central to the system is a fine-tuned, multi-label
DistilBERT model deployed on low-power, resource-constrained edge devices, enabling real-time ESG
classification, multilingual translation of regulatory content, and actionable intervention support. By
addressing the pervasive barrier of language accessibility—particularly among non-English-speaking
and low-literacy farming communities—the platform ensures equitable delivery of ESG intelligence
and climate-resilient decision-making. Validated through live deployments on dairy farms equipped
with Class 10 veterinary sensors and farmer interfaces in native dialects, the solution facilitates
methane emission tracking, rumination-based health monitoring, feed optimization, and Scope 1-
3 emissions traceability. Designed for offline inference and multimodal sensor inputs, the system
reinforces ESG compliance, sustainable certification, and data harmonization across distributed farm
networks. Ultimately, this architecture advances UN Sustainable Development Goals (SDGs) by
embedding linguistic inclusion at the core of climate-smart agriculture and redefining sustainability
through equitable technological integration. Persistent rural-to-urban migration and generational shifts
in labor have precipitated a critical shortage of human capital across global agriculture and dairy
sectors, disproportionately impacting smallholder farmers. This paper introduces a novel framework
for deploying Agentic Al—autonomous, self-improving digital agents capable of learning farmer
preferences, regional agronomic conditions, and value chain dynamics—to mitigate labor deficits,
facilitate knowledge transfer, and enhance productivity in resource-constrained agricultural systems.
The proposed solution utilizes modular, multilingual Al agents deployed on mobile and edge computing
platforms, optimized for low-bandwidth rural environments. These agents integrate voice-driven
interfaces to support semi-literate users and are tailored to local agronomic practices, ensuring cultural
and contextual relevance. The economic implications are substantial. According to estimates from the
World Bank and the Food and Agriculture Organization (FAO), labor shortages in agriculture result in
approximately USD 56 billion in annual productivity losses, with smallholders constituting the majority
of affected stakeholders. Our analysis demonstrates that Agentic Al can improve decision-making
in key areas such as crop selection, irrigation scheduling, and input optimization, leading to yield
increases of 5-15%. This translates to potential global economic gains of USD 12-20 billion annually.
This work advocates for a paradigm shift in agricultural technology, wherein Al agents function not
merely as tools but as cognitive collaborators—capable of learning, adapting, and augmenting the
reach of conventional agricultural extension services. We position Agentic Al as foundational digital
infrastructure for building resilient, inclusive, and future-ready food systems.
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INTRODUCTION

The global shortage of skilled labor in dairy and agriculture, particularly
among smallholder farmers—has resulted in annual productivity losses
exceeding USD 56 billion across developing economies (FAO, 2021; World
Bank, 2022). This crisis is driven by a confluence of factors: aging
workforces, limited access to agronomic expertise, rising labor costs, and
fragmented supply chains. For instance, over 70% of dairy farms report
difficulty in recruiting skilled workers, with labor costs rising by 15% in the
past five years and turnover rates reaching 30% annually (FAO, 2021). In the
UK alone, nearly 200 dairy farmers exited the industry in the year leading up
to April 2025, citing labor shortages as a primary concern (McKinsey Global
Institute, 2022).

Agentic artificial intelligence (Al)—defined as autonomous, context-
aware agents—offers a transformative solution to these systemic challenges.
Unlike traditional automation, Agentic Al systems can reason, adapt, and
execute multistep tasks with minimal human intervention. When strategically
deployed, these agents can augment the agricultural labor force, deliver
personalized agronomic guidance, and bridge the rural knowledge divide.
Real-world applications include autonomous irrigation scheduling, pest
monitoring via smart traps, and dynamic task coordination with farm
workers (Vuppalapati, 2025; Vuppalapati, 2021).

Empirical studies suggest that even a modest 10% improvement in
crop yield enabled by intelligent advisory systems could generate USD
12-20 billion in additional global value annually (IFAD, 2023; CGIAR Al
for Agriculture, 2022). Moreover, the Agentic Al market itself is projected to
grow from USD 7.28 billion in 2025 to USD 41.32 billion by 2030, reflecting
a compound annual growth rate (CAGR) of 41.48% (Vuppalapati, 2025).
By learning from farmer preferences, local crop profiles, climate variables,
and economic constraints, Agentic Al can foster inclusive, scalable rural
development and counteract the erosion of agricultural expertise due to
urban migration.

The remainder of this paper is organized as follows: Section II introduces
the Agentic Al architectural framework. Section III details the machine
learning models underpinning our Agentic Al system. Section IV discusses key
design and implementation considerations. Section V presents a real-world
case study. Finally, Section VI concludes the paper and outlines directions for
future research.

Al SYSTEMS AND HIERARCHICAL ARCHITECTURES
Al Agents

The emergence of ChatGPT marked a pivotal moment in artificial intelligence
(AI), showcasing the capabilities of large language models (LLMs) and
accelerating the integration of Al into mainstream workflows. At its core,
an Al agent is a goal-driven software entity capable of executing tasks
autonomously or semi-autonomously. These agents leverage LLMs trained on
vast corpora to interpret natural language, reason over context, and perform
actions with minimal human intervention.

Modern agentic patterns include Retrieval-Augmented Generation (RAG)
agents, SQL agents, and hierarchical agents, which may operate within
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single-agent or multi-agentic frameworks (LangChain, 2023a). A copilot
is a specialized form of AI agent designed to assist users through natural
language interactions. Unlike fully autonomous systems, copilots function
as collaborative companions—offering suggestions, summarizing content,
generating code, and streamlining decision-making across domains such as
software development, legal analysis, and enterprise operations.

Recent advancements have introduced agentic frameworks such as
AutoGen, LangGraph, and Crew Al, which support modular agent design,
tool integration, and human-in-the-loop workflows. These frameworks are
rapidly evolving, with the upcoming Al Agents Framework SDK expected
to standardize agent creation, reasoning, and action execution. The ReACT
(Reasoning and Acting) paradigm is becoming foundational, enabling agents
to interleave thought processes with tool use for dynamic decision-making.

Agentic Al systems are characterized by the following core capabilities
(LangChain, 2023b):

. Autonomy: Agents initiate and complete tasks with minimal supervision.

. Contextual Reasoning: They evaluate trade-offs, make judgment calls,
and adapt to changing inputs.

. Adaptive Planning: Agents dynamically adjust workflows based on
environmental feedback.

« Multi-modal Understanding: They process inputs across text, images,
APIs, and structured data.

. Action Execution: Agents interact with external systems via APIs,
databases, and web services.

Enterprise-grade agentic systems increasingly incorporate design patterns
such as:

. Tool Use: Agents invoke APIs and services to complete tasks end-to-end.

. Reflection: Agents self-evaluate and refine output for reliability.

. Planning: Agents decompose goals into actionable subtasks with
dependencies.

« Multi-agent Collaboration: Specialized agents coordinate under
orchestration layers to handle complex workflows (CGIAR Al for
Agriculture, 2022; LangChain, 2023a; LangChain, 2023b).

Hierarchical Agent Framework and Agentic Architectures

The Hierarchical Agent Framework represents a structured approach
to agentic Al, where agents are organized into layers of control and
specialization. This architecture mirrors organizational hierarchies, with
high-level agents responsible for strategic planning and low-level agents
executing domain-specific tasks.

In agricultural applications, for example, a top-level agent may oversee
farm-wide optimization, while mid-level agents manage irrigation, pest
control, and crop scheduling. Low-level agents interface with IoT sensors,
machinery, and weather APIs to execute granular actions. This layered
decomposition enhances scalability, interpretability, and fault tolerance in
dynamic environments (LangChain, 2023c).
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Recent innovations such as Agent Orchestra demonstrate the power of
hierarchical multi-agent systems. In this framework, a central planning agent
decomposes complex objectives and delegates subtasks to specialized agents
equipped with analytical tools, memory systems, and multimodal reasoning
capabilities. These agents collaborate through explicit sub-goal formulation,
inter-agent communication, and adaptive role allocation, outperforming flat-
agent baselines in task success and generalization (FAO, 2021).

Key technical design principles of hierarchical agentic systems include:

« Supervisor-Agent Model: High-level agents define goals and allocate
tasks to subordinate agents.

« Role-Based Specialization: Agents are designed around functional roles
(e.g., planner, executor, validator) rather than isolated tasks (LangChain,
2023b).

. Shared Memory and Context: Agents access persistent state and shared
knowledge bases to maintain coherence.

« Dynamic Orchestration: Agents adapt roles and responsibilities based on
evolving task requirements.

. Tool-Enabled Execution: Agents integrate with external tools (e.g.,
databases, APlIs, file systems) to perform real-world actions (LangChain,
2023a).

Hierarchical

AT

Figure 1: Hierarchical agentic architecture.

Frameworks such as AutoGen and Crew Al support hierarchical agent
deployment by offering built-in coordination mechanisms, memory sharing,
and error mitigation. These systems are increasingly used in domains like
logistics, legal automation, and precision agriculture, where layered task
management and domain-specific expertise are critical.

Supervisor Agent Framework Agentic Architectures

A Supervisor Agent (please see Figure 2) is a high-level autonomous entity
within a multi-agent or hierarchical Al framework that oversees, coordinates,
and regulates the behavior of subordinate agents to ensure alignment with
overarching system goals. It typically manages task delegation, monitors
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execution progress, handles exceptions, and resolves conflicts among lower-
level agents. In agricultural or dairy applications, a Supervisor Agent
might monitor weather-aware irrigation agents, crop health agents, and
logistics agents, ensuring that their outputs collectively contribute to farm-
level yield optimization or sustainability targets. It acts as the decision-
making orchestrator, adapting strategies based on environmental changes,
system feedback, or evolving objectives, thereby enhancing system resilience,
coherence, and autonomy (Vuppalapati, 2025).

Figure 2: Supervisor agent.

In agentic Al architectures, different coordination patterns govern how
agents collaborate to accomplish complex tasks. The Network pattern
involves (please see figure) a decentralized configuration where multiple
agents interact laterally, sharing information and decisions in a peer-to-
peer fashion without a central controller. This setup is ideal for distributed
environments where agents, such as crop monitors, irrigation optimizers, and
weather predictors, need to coordinate autonomously. In contrast, the Hand-
off pattern follows a sequential flow, where one agent completes its task and
passes the result to the next agent in the chain. For instance, a soil analysis
agent might trigger a seed selection agent, which then passes information to
a planting schedule agent—creating a clear, stage-wise pipeline.

The Maker-Checker pattern introduces a quality control mechanism: one
agent (the maker) produces an output, such as a recommendation or plan,
while a second agent (the checker) reviews and validates it before execution.
This is particularly useful in high-stakes or regulated domains like finance,
healthcare, or precision agriculture (LangChain, 2023a; 2023b; 2023c;
Vuppalapati, 2025).

Lastly, the Custom pattern allows developers to design bespoke agent
workflows tailored to unique domain challenges. It may combine elements
of hierarchy, recursion, or event-driven executions such as a supervisor agent
dynamically orchestrating a team of context-specific agents in response to
evolving farm conditions or supply chain disruptions. Each of these patterns
offers distinct advantages in terms of scalability, auditability, and flexibility,
depending on the use case. agentic architectures (please see Figure 3).

Agentic Frameworks

Emerging Agentic Frameworks

The agentic Al ecosystem is expanding rapidly to meet growing market
demands and address the increasing complexity of intelligent system design.
This section highlights four prominent frameworks—LangChain, Semantic
Kernel, Google Agent Development Kit (ADK), and Model Context Protocol
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Figure 3: Agentic architectures.

(MCP)—each offering unique capabilities for building, orchestrating, and
deploying autonomous Al agents.

LangChain
LangChain is a modular Python-based framework designed for building
applications powered by large language models (LLMs). It emphasizes two
core principles: data-awareness, enabling LLMs to connect with external
data sources, and agentic behavior, allowing models to interact with their
environment through tools and APIs (LangChain, 2023a).

Key features include:

« Reusable components such as chains, agents, memory, and tools

« Integration with vector stores, databases, and external APIs

« LangGraph support for stateful orchestration and streaming

« Compatibility with OpenAl, Anthropic, Hugging Face, and other
providers.

LangChain is widely used for retrieval-augmented generation (RAG),
autonomous task execution, and multi-agent coordination.

Semantic Kernel
Semantic Kernel (SK), developed by Microsoft, is an open-source SDK that
enables developers to embed LLMs into enterprise applications using familiar
programming languages like C#, Python, and Java (LangChain, 2023b). It
abstracts prompt engineering, memory management, and orchestration into
modular components.

Core capabilities include:

« Plugins: Semantic and native functions that encapsulate Al logic

« Memory: Persistent context for multi-turn reasoning

« Planner: Goal decomposition and execution strategy engine

. Connectors: Interfaces to Azure OpenAl, Hugging Face, and custom
APlIs.
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SK empowers developers to build intelligent copilots and workflow agents
with robust observability, security, and integration flexibility.

Google Agent Development Kit (ADK)
Google’s Agent Development Kit (ADK) is a model-agnostic framework
for building and deploying Al agents within the Gemini and Vertex Al
ecosystems. ADK supports hierarchical agent composition, tool integration,
and dynamic orchestration (FAO, 2021).

Highlights include:

. Workflow Agents: Sequential, parallel, and loop-based execution

« Multi-Agent Collaboration: Role-based delegation and coordination

« Tool Ecosystem: Built-in and custom tools for real-world actions

. Deployment Options: Local containers, Cloud Run, and Vertex Al Agent
Engine

. Integrated Evaluation: Step-by-step tracing and performance metrics.

ADK is designed to make agent development feel like modern software
engineering, with structured templates and CLI support.

Model Context Protocol (MCP)

The Model Context Protocol (MCP), introduced by Anthropic in late 2024, is
an open standard for enabling Al models to interact seamlessly with external
tools, data sources, and APIs (World Bank, 2022; McKinsey Global Institute,
2022). MCP addresses the “NxM?” integration problem by providing a
universal interface for Al-to-system communication.

Figure 4: Semantic kernel.
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Key architectural components:

« MCP Host: The Al model (e.g., Claude, GPT) initiating requests

« MCP Client: Middleware that routes requests to MCP servers

« MQCP Server: Lightweight services exposing APIs, databases, or files

« Transport Protocols: Supports JSON-RPC 2.0 over stdio, HTTP, SSE, and
WebSockets.

MCP enables secure, scalable, and bidirectional communication between
Al agents and enterprise systems. It has been adopted by major providers
including OpenAl, Google DeepMind, and Microsoft Azure OpenAl Services.
Developers can build MCP clients and servers using official SDKs, allowing
Al models to fetch real-time data, execute functions, and deliver context-rich
responses (FAO, 2021; World Bank, 2022; McKinsey Global Institute, 2022).

REASONING-DRIVEN AGENTS AND RETRIEVAL-AUGMENTED
ARCHITECTURES

Chain of Reasoning: ReACT (Reasoning and Acting)

The current generation of Al agents increasingly functions as business-
driven task enablers, enhancing productivity and fostering innovation
across domains. A pivotal advancement in this space is the ReACT
paradigm—Reasoning and Acting—which synergizes structured reasoning
with actionable execution. Introduced by Google Research, ReACT enables
language models to alternate between generating reasoning traces and
performing actions, thereby solving complex tasks through dynamic,
interpretable trajectories (FAO, 2021).

While the concept of structured reasoning is not new—having long existed
in agricultural practices such as crop calendars, irrigation schedules, and
input management—ReACT formalizes this process within Al systems. It
allows agents to:

. Decompose goals into actionable subtasks

« Inject common sense knowledge into decision-making

« Track progress and adjust plans dynamically

« Interact with external environments (e.g., APIs, search engines) to refine
reasoning (FAO, 2021; World Bank, 2022).

Tools: Debase
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Figure 5: ReACT.
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Unlike earlier architecture such as RAG (Retrieval-Augmented
Generation), which focus primarily on information retrieval and static
generation, ReACT agents maintain working memory and adapt actions
based on evolving context. This marks a shift from passive generation to
goal-oriented, feedback-driven execution.

Key frameworks and libraries advancing ReACT include:

« AutoDev: A foundational research effort that inspired GitHub Copilot

. DyLAN and Amazon Q Developer: Domain-specific agentic platforms

« MetaGPT, LATS, and ReAct libraries: Define inter-agent collaboration
and reflection patterns

« AutoGen and CrewAl: Support multi-agent orchestration with memory
and planning modules.

The decision to deploy Al agents depends on several factors:

. Environmental complexity: Dynamic, stochastic, or adversarial settings
benefit from adaptive agents

. Data availability: Agents require rich, relevant datasets for training and
inference

« Human-Al interaction: Agents may augment, assist, or replace human
decision-making depending on autonomy levels

. Ethical considerations: Fairness, accountability, and transparency must
guide deployment (Vuppalapati, 2019; Yang et al., 2019).

Use cases range from autonomous vehicles and contract negotiation to
plant disease diagnosis and music composition. As agents evolve toward
higher reasoning fidelity, they may not achieve true consciousness, but they
increasingly emulate goal-driven cognition.

Retrieval-Augmented Generation (RAG) Pattern

Retrieval-Augmented Generation (RAG) is a pragmatic architecture that
enhances LLMs by grounding their outputs in external, domain-specific data.
Originally introduced by Facebook AIl, RAG mitigates hallucinations and
improves factual accuracy by integrating semantic search with generative
modeling (CGIAR Al for Agriculture, 2022; LangChain, 2023a).

The RAG workflow typically involves four steps:

1. Embedding Creation: Internal documents are vectorized using

embedding models and stored in a vector database (e.g., FAISS, Azure

Al Search).

Query Submission: A user submits a natural language query.

Context Retrieval: An orchestrator performs similarity search and

retrieves relevant chunks.

4. Response Generation: The LLM generates an answer using the retrieved
context (IFAD, 2023; CGIAR Al for Agriculture, 2022).

W

This architecture is particularly effective for enterprise applications such
as legal research, customer support, and product matching. It enables:
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« Domain grounding: Responses are tied to proprietary content

. Interpretability: Retrieved sources can be cited and audited

« Scalability: Vector databases support real-time search across large
corpora

« Security and control: Enterprise-grade systems like Azure Al Search offer
robust access controls and reliability (IFAD, 2023).

o3

Custom documents
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Vector database
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Large language model
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Figure 6: RAG.

Advanced RAG implementations now support agentic retrieval, where
agents evaluate initial responses and autonomously seek better answers if
the original output is incomplete. Frameworks like LangChain, Semantic
Kernel, and Llamalndex facilitate orchestration and integration with retrieval
systems.

As generative Al agents become more prevalent, it is essential to approach
their deployment with ethical rigor. Bias mitigation, transparency, and
responsible design must underpin all implementations. The future of agentic
Al promises a world where intelligent systems not only generate content
but also reason, act, and adapt in real time—transforming industries and
empowering users across the globe.

INTEGRATING MCP WITH REACT AND RAG WORKFLOWS

The integration of the Model Context Protocol (MCP) into agentic
workflows such as ReACT and RAG marks a significant advancement in
the design of intelligent, modular AI systems. MCP provides a standardized
interface for connecting Al agents to external tools, APIs, and data sources,
enabling seamless execution of reasoning-driven and retrieval-augmented
tasks.

MCP + ReACT: Enabling Reasoning-Driven Action

The ReACT paradigm—Reasoning and Acting—relies on agents that
interleave thought processes with tool use to solve complex tasks. MCP
enhances this architecture by serving as the execution layer for ReACT agents,
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allowing them to invoke tools, access structured resources, and maintain
working memory across multi-step interactions.
Key benefits of MCP integration with ReACT include:

. Tool Invocation: Agents can call MCP-exposed tools (e.g., search, email,
database updates) directly from reasoning traces.

« Memory Persistence: MCP servers support long-term memory, enabling
agents to track goals, user preferences, and historical context.

« Modular Composition: ReACT agents can dynamically select tools and
resources based on evolving reasoning paths, improving adaptability and
interpretability.

. Agentless Deployment: MCP supports agentless architectures, allowing
lightweight clients (e.g., React apps) to interact with intelligent backends
without hosting full agents.

For example, a ReACT agent embedded in a farm management system
could reason about irrigation schedules, retrieve weather data via MCP, and
trigger automated watering actions—all within a single reasoning loop.

MCP + RAG: Enhancing Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) enhances LLMs by grounding their
outputs in external data. MCP complements RAG by acting as a retrieval
orchestrator, standardizing access to vector databases, APIs, and structured
resources2.

Advantages of MCP-enhanced RAG workflows include:

« Dynamic Retrieval: MCP servers expose resources (e.g., documents,
records, sensor data) that agents can query in real time, bypassing static
embedding pipelines.

« Tool-Driven Context Injection: MCP tools can preprocess, filter, or
annotate retrieved data before it is passed to the LLM, improving
relevance and factual accuracy.

. Composable Pipelines: Developers can build modular RAG systems using
MCP components such as FastMCP, RetrievalQA, and Chroma, enabling
scalable and auditable retrieval flows.

« Secure and Discoverable Resources: MCP supports hierarchical data
exposure with metadata annotations, allowing agents to select relevant
context intelligently.

For instance, an MCP-powered RAG agent in a legal assistant could
retrieve clauses from contracts stored in a vector database, summarize them

using an LLM, and cite the source documents—all through standardized
MCP calls.

Unified Agentic Loop With MCP

By integrating MCP with both ReACT and RAG, developers can build fully
agentic systems that support:

« DPerception: Accessing external data via MCP resources
. Reasoning: Structuring logic and decision-making via ReACT
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« Action: Executing tasks through MCP tools
« Memory: Persisting context across sessions and agents.

This unified loop enables Al agents to operate autonomously in dynamic
environments, bridging the gap between static generation and real-world
execution.
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Figure 7: Flexible conversation patterns.

SYSTEM OVERVIEW

This architecture enables a multi-agent, context-aware system to support
small farmers by combining: Natural language interfaces, Supervisor agent
orchestration, Specialized domain agents and tools, Semantic search over
domain-specific vector stores, and Personalized recommendations using
farmer history and ESG data (please see Figure 8).

The Hierarchical Agentic Al Architecture system designed to serve small
farmers by integrating user interaction, supervising intelligence, worker
agents/tools, and backend data storage. Here’s a detailed interpretation of
each component:

The batch layer then feeds into a serving layer, which indexes the batch
view for efficient window querying. In turn, the speed layer updates the
serving layer with incremental updates based on the most recent data.
By utilizing the lambda architecture, we can optimize data processing for
rumination count detection, providing valuable insights into the health and
wellbeing of cattle for farmers and industry professionals alike (CGIAR Al
for Agriculture, 2022; LangChain, 2023¢; Vuppalapati, 2025; [lapakurti and
Vuppalapati, 2015).
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Figure 8: Agentic architecture.

User Experience

This is the entry point for farmers or users to interact with the system
via natural language. It acts as the conversational interface, translating
user queries into structured inputs for agentic processing. May support
multilingual and voice interfaces, crucial for accessibility in rural regions.

To calculate the rumination count, we utilize both sensor data, with the
exception of the accelerometer, which serves as an inhibitor or initiator
trigger. By combining these data points, we can gain valuable insights into
the health and wellbeing of the cattle, providing farmers with the necessary
information to optimize their feed management practices and ensure the
continued health and productivity of their herds.

Supervising Intelligence

This is the central Supervisor Agent responsible for orchestrating other
agents. It interprets user intent, decides which worker agents to activate, and
routes context across modules. Learns farmer preferences, history, and goals
to enable personalized, context-aware responses.

SYSTEM DESIGN AND IMPLEMENTATION

As part of the system design, the next step would be application of Window
functions to detect rumination and then once detected calculated rumination
count (Vuppalapati, 2019).

Agents

Following are agents that helps supervising architecture:

. Agricultural Agent: Provides recommendations on crop planning, soil
health, irrigation, and sustainable practices.

« Specialty Crops Agent: Focuses on region-specific or high-value crops like
spices, floriculture, or organic produce.

. Commodity Prices Agent: Tracks and analyzes real-time market trends,
price fluctuations, and forecasts.

. Dairy Agent: Advises on cattle health, milk productivity, feed
optimization, and veterinary support.
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Tools (Highlighted in Orange)

Following are tools:

« Human Conversation: Supports natural human-agent dialogue handling
beyond structured queries.

« ESG Meta Data: Embeds Environmental, Social, and Governance
context, such as carbon emissions or water usage.

« User History: Stores interaction logs and behavioral patterns for
personalized recommendations.

« Research: Fetches domain-specific knowledge, including scientific papers,
weather advisories, and agronomy updates.

Data Storage and API Layer

This layer underpins the intelligence system by storing embeddings, domain
data, and delivering personalization.

Databases (Green - Vector Stores)

« Technical Vector DB: Stores embeddings from technical manuals, soil
data, etc., used for semantic search.

« Dairy Vector DB: Contains vectorized content related to dairy health,
nutrition, and productivity.

« Price Vector DB: Captures historical and real-time market price data for
commodities.

A CASE STUDY

We have tested and deployed Agentic Al models (please see Figure 9)
for Agriculture Analytics, Specialty Crops, and Value Chain Analytics
(Hanumayamma, 2024).
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CONCLUSION AND FUTURE WORK

The dairy and agriculture sectors are increasingly challenged by critical
human resource issues that threaten their long-term viability and global food
security. These include a shrinking rural workforce due to urban migration,
demographic aging of farm laborers, declining interest in agricultural
employment among youth, and significant labor shortages during peak
farming cycles. Technological advancements—though necessary—have not
yet offset the human capital deficit in many developing and developed
regions. The result is a growing gap between agricultural production needs
and workforce availability, directly impacting crop yields, dairy productivity,
and supply chain resilience. Addressing these issues is central to achieving
sustainable development goals (SDGs), particularly in food security, poverty
reduction, and rural economic stability.
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