Applied Human Factors and Ergonomics (AHFE2025), Vol. 199, 2025, 1221-1230 AH FE
https://doi.org/10.54941/ahfe1006933 |hternational

Secure Authentication Design for Al
Agents

Anna Topol’, Elizabeth Koumpan?, Laurentiu Gabriel Ghergu?,
and Grzegorz Jurek*

TIBM Research, Yorktown Heights NY 10598-0218, USA
2IBM Consulting, Ottawa, ON K1G 4K9, Canada

3IBM Consulting, Bucharest, B 060201, Romania

4IBM Consulting, Krakow, 12 30-150, Poland

ABSTRACT

In the financial industry, artificial intelligence (Al) agents are increasingly adopted
to drive higher productivity and economic performance. These solutions require
access to critical enterprise systems, such as ERPs, trading platforms, or other
solutions, where they need to authenticate and execute actions on behalf of their
users. This brings specific security challenges regarding how to reliably authenticate
the agents to these critical systems. In this paper, we will examine common anti-
patterns in designing authentication mechanisms for agents in function-calling use
cases. Additionally, we will present the best solution for implementing authentication
and explore two alternative security solutions depending on the capabilities of the
external system. Finally, we will provide an example architecture that uses the MCP
protocol to authenticate the agent.

Keywords: MCP, Agent security, Financial industry, Enterprise systems, Agent architecture,
Security patterns

INTRODUCTION

In the financial industry, agents are becoming pervasive as artificial
intelligence expands its applicability to various financial use cases (Weforum,
2025).

However, financial institutions face increasing challenges with security
when it is applied to agents, where agents needs to be authenticated in the
company core systems, and retrieval augmented generation in particular, as
the risks compound (Rooseveltinstitute, 2024).

Regulatory non-compliance concerns, adversarial manipulation, and
accountability gaps increase the pressure on the IT division to strengthen
the security of its agents.

Specific challenges exist in this space as the agent will usually not
authenticate itself but rather perform actions on behalf of its users, or
on behalf of another agent, or systems can make decisions and take
actions independently without explicit human approval for each action.
Impersonation is not a technique that can be easily adopted when it comes
to critical IT systems (Medium, 2025).

© 2025. Published by AHFE Open Access. All rights reserved. 1221

https://doi.org/10.54941/ahfe1006933

1222 Topol et al.

In this paper we review common security anti-patterns, and provide some
recommendations.
Let’s analyse communication flow in the diagram below.

A.
>

Entra ID

T
- i e 2§il::t Kewm -
Users Secure
Chat interface Agentic Framework

Prompts

Legend

Data flow

LLM

Figure 1: Conceptual model of generic use case for agents (IBM IP owned).

In the above pattern, users converse with an agent through a web
application that authenticates them based on a user repository, such as Active
Directory (Entra ID, Verify), an LDAP server, or other identity & access
management service (Medium, 2025).

The Agent code is responsible for internal orchestration between the Large
Language Model (LLM) and existing tools that the model can use. The Agent
code relies on an Agentic Framework (e.g., Langchain) to interact with LLM.

The Agent code will use a specialized prompt to inject the list of available
tools into the model’s context. The LLM model, which is also fine-tuned
for tool usage, can reply with a request about which tool it needs and what
parameters to send to that tool to fetch additional information from the core
banking company system or execute specific actions on behalf of the user in
this system.

How do we ensure the Agent code cannot retrieve or modify information
that the currently logged-in user doesn’t have permission to access, even
though the Agent itself needs system access to function? If the Agent uses its
own credentials or system-level access, it could bypass user-level permissions
and access data the user shouldn’t see.

When proposing a design for this problem, the architect may utilize a set
of the following anti-patterns to address this security challenge:

. the system operates with full autonomy
. acts on behalf of the user
. operates on behalf of an agent.

Each model introduces unique vulnerabilities when implemented
incorrectly.

Secure Authentication Design for Al Agents 1223

Anti-Patterns When Implementing Security in Agent-Led Retrieval
System

1) Use of tokens in the prompts that the LLM is receiving by putting them
into context

In this approach, the front-end (assuming a secure chat interface) will
authenticate the user and obtain a JWT token from the user repository, then
it will inject this token into the context of the LLM.

A special prompt is used to instruct the LLM how to use the tool, requiring
the LLM to include the authentication token in its response. This way, the
Agent code using a regular expression will be able to parse the response
and send the request to the tool, including the JWT token that is used for
authentication.

However, in this approach, the LLM is managing the credentials, which
is a bad practice as its output may be non-deterministic. It may hallucinate
or use the incorrect JWT when authenticating the user, leading to security
vulnerabilities, which could result in unauthorized access or authentication
failures.

2) Adding the prompts as tool parameters by the LLM

In this scenario, the LLM is constructing the list of input parameters for
the tool, and the JWT token is included as one of these parameters.

This is an anti-pattern as the LLM should not be directly involved in the
inclusion of the authentication token in the list of parameters for the tool
(Github, 2024) If the prompt or tool call is logged, cached, or transmitted
insecurely, the JWT can be intercepted and used by unauthorized entities,
leading to session hijacking, privilege escalation, or data breaches.

3) Letting the LLM choose which token or credentials should be used

In this scenario, the LLM is empowered to decide which authentication
token to use based on a specific user scenario.

The action is performed using a service account that has elevated
permissions, where the connectivity to the external system is established using
a series of service accounts, some with read-only permissions and others with
write permissions. Allowing the LLM to make a decision based on the user
scenario, may lead to a compromised token being used, an unauthorized
token being leaked, or a violation of security policies, as the model may not
have the necessary guardrails to make a safe decision.

4) Determining the user identity from the input text, where the LLM is used
to determine the user’s identity based on their interactions.

For example, the user declares his name as Bob Smith. Hence, the agent
believes that the identity has been provided, and it’s executing requests
towards the external system using this service principal. This is catastrophic
security vulnerability, as anyone can claim to be anyone, there is no password
verification, so session, multi- factor authentication.

Identity must always be properly established before agent conversation

1224 Topol et al.

5) Not propagating the user identity downstream (IBM, 2025).

The chosen authentication solution should create audit logs that accurately
identify the actor executing the action on the external system.

To ensure an external system is informed of the full chain of command
when an action originates from a user, is executed by an agent, and then
performed on the external system, the authentication token used by the agent
must carry information representing this delegation.

Using tokens that do not propagate the user identity towards the external
system but rather only propagate the identity of the agent may not be
sufficient, as multiple users can use the agent at the same time. The audit logs
on the external system side must correctly identify both the actor performing
the action and the context in which the action is being performed.

6) Service account has full administrative rights on the core system and can
impersonate users (Cloud.google, 2025).

In this scenario, a service account with full administrative permissions is
used to authenticate the agent on the external system. This account will then
impersonate users and perform actions on their behalf.

This is an anti-pattern, as the agent should have the least amount of
privileges when executing actions on behalf of users in external systems. The
users must provide specific and limited access credentials to the agents that
represent them.

7) Fetching all the external system data, then filtering in the agent

If the external system does not have sufficient security mechanisms,
extracting all the data and then filtering it within the agent application may
not be considered the best security practice.

A better approach is to ensure that only the necessary data is extracted
from the remote system, allowing security to be implemented either in a
separate gateway component or within the external system itself.

Filtering logic done inside the agent is not recommended. Relying solely on
agent instructions for security checks is non-deterministic, making the system
vulnerable to security issues, whereas using variables and filters provides
more precise and secure control.

IMPLEMENTING AUTHORIZATION AND AUTHENTICATION WHEN
USING TOOLS

We recommend to leverage the OAuth2 (Hardt and Jones, 2012) standard
and generate authentication tokens that are then managed directly by the
Agent code.

A high-level overview of the architecture is presented in Figure 2 below.

The user will open the graphical user interface, invoke the agent, and be
redirected to the login page of the identity provider (IdP). On a successful
login, the identity provider provides an authentication token (usually a JWT
token), the agent code will use when receiving requests from the LLM to
leverage the tool.

Secure Authentication Design for Al Agents 1225

‘ pheai
Dj”iﬂ
Redirrect to 1D

r| et token
end JWT token
—h Sand auth token + Txt | :
Send prompt
| #———————Receive response with tool call request
|

Call fool and include auth tok

‘ IDP ‘ ‘ LLM ‘ ‘ External tool External system ‘

Gall system include auth_y,|
token
«——Provide dal

Receive dala-

|
D“Send data from 100l (no auth token)———————>|
nerale response-
1 |

«——Send final response—i

Figure 2: Authentication flow between agent and external system (IBM data flow
design).

The LLM will not see or use this authentication token when it needs to
access the external system using the tool. Instead, the agent code will send
just the user text as a prompt to the LLM and load the information about
the existing tools in the context of that prompt. The LLM fine-tuned for tool
usage, can decide to extract data from the external system by calling the tool.

The Agent code will use regular expressions to analyse the LLM
request and extract parameters necessary to call the tool, except for the
authentication token. The Agent code will call the external tool by including
the authentication token, which was stored in the user session on the server
side.

Once the tool retrieves the needed data elements, they will be provided
to the LLM for generating the final answer without giving any information
regarding the authentication token. Finally, the response will be sent to the
user.

One concern here is the situation where the tool may allow the execution
of destructive actions on external systems, such as enabling the LLM to delete
a table it receives as a parameter. In this situation, the LLM may provide the
incorrect table name, and the tool may perform a destructive action on behalf
of the user because the authentication token has sufficient permissions.

We need to implement guardrails, f.e. bringing ‘human in the loop’, where
the agent asks the user to confirm that the action about to be performed is
correct (AWS Documentation, 2025).

For such actions that are considered risky by the programmer, an
additional step may be displayed to the user directly by the agent to confirm
that the action proposed by the LLM is correct. If the user confirms, then the
agent code will execute the tool call with the specified LLM parameters on
the external system.

In such situations, there may be additional challenges, depending on the
external system’s capabilities

1226 Topol et al.

Integration With External Systems That Offer No Interface (Linkedin,
2025)

In some cases, the external system may not provide an API interface that the
tool can leverage.

In this scenario, one option is to leverage Robotic Process Automation to
execute the login procedure and specific actions in external systems. That
way, we can integrate with this solution even if no API interface is available.

An architecture overview is presented in Figure 3 below.

ey
User S
Repository | RPA solution

|
N Request ___ Execute. X
cm—e—ﬁ—cn Agent code o wa —— Workfiow 2
| e ?
{ chat merace w : Worktow 3

Prompts H
i Workflow 4

Agent H

Company
System

Legend

S

Data fiow

Figure 3: Use of RPA to integrate agents with external systems (IBM).

In this scenario, the tool will be used to execute a specific workflow on
the company system. These workflows can trigger the execution of business
processes or authenticate the user to the system.

The authentication token will be propagated from the Secure Chat
interface to the Tool in the same way as described previously, then the
workflow may map a specific claim from the JWT token (like the user email)
to a local repository that maps the user to a given authentication method
which the RPA bot will use as part of a specific flow to login on the Company
system.

Integration With External Systems With Legacy Protocols (Moesif,
2025)

In a different scenario, the company system may use an authentication
protocol that is not supported by the company that is delivering the agent.
In this scenario, we can use a middleware to implement the authentication
protocol conversion. This will allow both the agent and the company
system to leverage the authentication protocol, which is compliant with their
company standards.

A high-level architecture overview is presented in Figure 4 below.

The middleware is a software component of Company 1 (SaaS provider),
which is mapping the authentication tokens issued for users when connecting
to the front-end of the agent application to API keys, which are required to
connect to the external system located under the control of Company 2.

Secure Authentication Design for Al Agents 1227

i
I

!

I

| it ettt b S el D e A e 1!
| Agent |
: I

|

|

I

I

I

I

Users

i I
| v i |
RN ’—|® - R Requast m...z Mideware Pt ke,
Secure H
Chat interface Agentic Framework '

Prompts

o

LM

Company 1 (Saas solution)

Figure 4: SaaS agent with authentication protocol conversion (IBM).

The middleware can use the claims from the JWT token, like the user’s
email address, to propagate the identity into the Company System. As the
JWT tokens are signed, the middleware can trust the claim to be valid.

Hence, the proposed solution will enable SaaS providers of agentic
solutions to connect to external systems that do not comply with their internal
corporate standards in terms of authentication and authorization.

Example Security Implementation With MCP Protocol (Medium,
2025)

The real-life implementation of the pattern described above can be achieved
with the help of the MCP protocol. Let’s assume we plan to implement an
agent assistant that responds to queries related to invoice status for a client
using multiple types of applications.

The scenario may look straightforward, but complexity arises when you
realize that the structure of business units and the authorization model differ
between various systems. For example, SAP has a fixed model composed of
companies and plants, while EBS(e-business suite) allows the structure of
business units in a more flexible way, adjusted for client preferences.

In such a scenario the proposed architecture should be built with MCP
server that manages Al Tools, Token Manager.

MCP Server is a module that:

. Enables tools that external agents can use

« Manages the accesses, can request identity information, and pass it
to the token manager to obtain a token

« Stores the tokens and passes them to the tool when needed

. Logs and monitors the accesses, ensuring traceability

Token manager is a custom module that can:

« Understand the structure of business units in the subjected systems

« Able to retrieve the authorization information from the system based
on a given user identifier

. Create or obtain tokens that allow tools to execute actions in the
systems

1228 Topol et al.

— It can be short-lived tokens created on request (preferred way)
— Or standard accounts segregated by the business unit and role

. Pass token to integration tools to let them connect directly to the
external system to execute tasks with limited privileges.

Core mm—)

System 1 Core

Integration System 1
Tool

MCP
@ RS “ Server

Core

PSSSY system 2

Integration

Tool ——)

Core
System 2

Figure 5: MCP architecture (IBM).

Types of Tokens, Token Life Span

To ensure secure operations, only short-lived tokens should be passed to the
Al tool. These tokens should remain valid only for the duration necessary to
complete the requested operation. Ideally, such tokens would be generated
directly within the enterprise application; however, this is often not feasible,
as most core systems do not support this capability. To overcome this
limitation, a token manager can be used to generate short-lived tokens, which
are then managed by the token manager module.

Core
@) (@) MCP [6) System
Server Integration o
Tool EEpry
1
e .
\@

N
@ vorsonr
o Token manager requests core system for short lived token allowing READ operations for CC 1 or based on the functional accounts

hort lived tok

(O R T —

@ negeion y —

Figure 6: Token lifespan (IBM).

In this approach, the token manager relies on a matrix of functional
accounts, each configured with access to specific business units and

Secure Authentication Design for Al Agents 1229

features. While this method requires the creation and maintenance of
many functional accounts within the core enterprise system, it offers a
key security benefit: agents are never granted broad system access, and
credentials are not distributed across multiple tools or agents. Instead, access
is centrally controlled by the token manager module, ensuring auditability
and traceability.

CONCLUSION

Agents, cross—agent collaboration is becoming pervasive in the financial
industry, and many other industries. This is raising authentication and
authorization challenges as these solutions have to connect to critical
company systems. Various anti-patterns can be found in the industry,
given that implementing security for this new technology is not very
straightforward.

Depending on the connectivity needs for various enterprise solutions
worldwide, it may be necessary to utilize Robotic Process Automation to
integrate with legacy systems or leverage middleware solutions to modify the
authentication protocol and comply with company policies.

For tool access, we recommend to use the MCP protocol, which
supports OAuth2 as a standard protocol for authenticating users to external
company systems. The MCP Server can be combined with a Token Manager
component to generate short-lived tokens which are based on a matrix of
functional accounts, each configured with specific business units and features.

While security-efficient Al-driven automation of routine IAM tasks and
Al-optimized threat intelligence initiatives are promising, the efficacy of
such approaches has yet to be quantified at scale. Authentication methods
continue to mature.

With MCP and similar frameworks like LangChain or AutoGen, Al agents
are no longer just able to answer questions or provide information — they’re
actually executing actions quickly. And this shift is making it dangerously
easy to give those services too much power and control, without fully
understanding the implications (Echohq, 2025)

. Autonomous systems require the most restrictive controls with kill
switches and bounded authority

. User delegation must never store credentials and should use short-lived,
scoped tokens

. Agent identities need least-privilege service accounts with strong
authentication

« All models benefit from defense in depth, comprehensive logging, and
continuous monitoring

. Context matters: Choose security controls based on the autonomy model
and risk profile

Security, observability, and auditability have to evolve alongside Security
frameworks. Because when something goes wrong, it won’t be the model’s
fault, but it’ll be the system around it.

1230 Topol et al.

ACKNOWLEDGMENT

The authors would like to acknowledge to Jean Stephane Payraudeau,
Sridhar Muppidi, Jose A Rodriguesz, for their support.

REFERENCES

Artificial Intelligence in Financial Services. https://reports.weforum.org/docs/WEF_A
rtificial_Intelligence_in_Financial_Services_2025.pdf

Agent Authentication in Al Systems. https://medium.com/@lahirugmg/agent-authen
tication-in-ai-systems-a67008e47a09

Agent Authentication in Al Systems. https://medium.com/@lahirugmg/agent-authen
tication-in-ai-systems-a67008e47a09

Expert Advice on Integrating APIs with Legacy Systems in 2025 - https:
/l'www.moesif.com/blog/monitoring/Expert- Advice-on-Integrating- APIs-wit
h-Legacy-Systems-in-2025/

Hardt, D., & Jones, M. (2012). The OAuth 2.0 Authorization Framework. Internet
Engineering Task Force (IETF). [RFC 6749]. https://doi.org/10.17487/RFC6749

Implement safeguards for your application by associating a guardrail
with your agent. https:/docs.aws.amazon.com/bedrock/latest/userguide/
agents-guardrail.html

Identity propagation and distributed security. https://www.ibm.com/docs/en/cics-ts/
5.6.0?topic=securing-identity-propagation-distributed-security

Model Context Protocol (MCP) real world use cases, adoptions and comparison to
functional calling. https://medium.com/@laowang_journey/model-context-prot
ocol-mcp-real-world-use-cases-adoptions-and-comparison-to-functional-calling
-9320b775845c¢

Passing an Authorization Token to the tool & avoiding the LLM. #534 - https:/gith
ub.com/langchain-ai/langserve/discussions/534

Service account impersonation. https://cloud.google.com/iam/docs/service-account-
impersonation

System Integration Without APIs: Creative Approaches That Deliver.
https://www.linkedin.com/pulse/system-integration-without-apis-creative-ap
proaches-deliver-vema-wtwhc/

The Risks of Generative Al Agents to Financial Services - https://rooseveltinstitute.o
rg/publications/the-risks-of-generative-ai-agents-to-financial-services/

The 6 hidden risks in deploying with MCP. https://www.echohq.com/gated/hidden-
risks-of-mcp

https://reports.weforum.org/docs/WEF_Artificial_Intelligence_in_Financial_Services_2025.pdf
https://reports.weforum.org/docs/WEF_Artificial_Intelligence_in_Financial_Services_2025.pdf
https://medium.com/@lahirugmg/agent-authentication-in-ai-systems-a67008e47a09
https://medium.com/@lahirugmg/agent-authentication-in-ai-systems-a67008e47a09
https://medium.com/@lahirugmg/agent-authentication-in-ai-systems-a67008e47a09
https://medium.com/@lahirugmg/agent-authentication-in-ai-systems-a67008e47a09
https://www.moesif.com/blog/monitoring/Expert-Advice-on-Integrating-APIs-with-Legacy-Systems-in-2025/
https://www.moesif.com/blog/monitoring/Expert-Advice-on-Integrating-APIs-with-Legacy-Systems-in-2025/
https://www.moesif.com/blog/monitoring/Expert-Advice-on-Integrating-APIs-with-Legacy-Systems-in-2025/
https://doi.org/10.17487/RFC6749
https://www.ibm.com/docs/en/cics-ts/5.6.0?topic=securing-identity-propagation-distributed-security
https://www.ibm.com/docs/en/cics-ts/5.6.0?topic=securing-identity-propagation-distributed-security
https://medium.com/@laowang_journey/model-context-protocol-mcp-real-world-use-cases-adoptions-and-comparison-to-functional-calling-9320b775845c
https://medium.com/@laowang_journey/model-context-protocol-mcp-real-world-use-cases-adoptions-and-comparison-to-functional-calling-9320b775845c
https://medium.com/@laowang_journey/model-context-protocol-mcp-real-world-use-cases-adoptions-and-comparison-to-functional-calling-9320b775845c
https://github.com/langchain-ai/langserve/discussions/534
https://github.com/langchain-ai/langserve/discussions/534
https://www.linkedin.com/pulse/system-integration-without-apis-creative-approaches-deliver-vema-wtwhc/
https://www.linkedin.com/pulse/system-integration-without-apis-creative-approaches-deliver-vema-wtwhc/
https://rooseveltinstitute.org/publications/the-risks-of-generative-ai-agents-to-financial-services/
https://rooseveltinstitute.org/publications/the-risks-of-generative-ai-agents-to-financial-services/
https://www.echohq.com/gated/hidden-risks-of-mcp
https://www.echohq.com/gated/hidden-risks-of-mcp

	Secure Authentication Design for AI Agents
	INTRODUCTION
	Anti-Patterns When Implementing Security in Agent-Led Retrieval System

	IMPLEMENTING AUTHORIZATION AND AUTHENTICATION WHEN USING TOOLS
	Integration With External Systems That Offer No Interface (Linkedin, 2025)
	Integration With External Systems With Legacy Protocols (Moesif, 2025)
	Example Security Implementation With MCP Protocol (Medium, 2025)
	Types of Tokens, Token Life Span

	CONCLUSION
	ACKNOWLEDGMENT

