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ABSTRACT

The integration of Large Language Models (LLMs) such as OpenAl's Codex and
ChatGPT into programming environments has significantly transformed software
development practices, influencing productivity, education, and user experience. This
meta-analysis integrates findings from empirical studies and product-level evaluations
of widely adopted commercial tools (e.g., GitHub Copilot, Amazon CodeWhisperer,
Tabnine, Sourcegraph Cody) alongside innovative academic prototypes. We explore
how different user groups, including novice programmers, expert developers,
researchers, and computer science educators, engage with and experience these
LLM-based programming tools. The synthesis highlights key human-computer
interaction (HCI) themes including trust calibration, cognitive load management,
interface modalities (inline versus chat interactions), and balancing automation with
user control. While findings indicate substantial productivity benefits, improved
workflow integration, and enhanced learning support, persistent challenges related
to code correctness, user over-reliance, and ethical concerns remain significant.
This integrated analysis offers comprehensive design recommendations and outlines
implications for future development, research practices, and education.
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INTRODUCTION

The rapid advancement and adoption of large language models (LLMs)
capable of generating and assisting with code have reshaped the software
development landscape. Foundational models such as OpenAl’s Codex
and ChatGPT have enabled the development of modern programming
assistants that integrate directly into coding environments (“ChatGPT,”
2024; “OpenAl Codex,” 2025). Tools such as GitHub Copilot (“GitHub
Copilot,” 2025), Amazon CodeWhisperer (“CodeWhisperer,” 2025), and
Tabnine (“Tabnine,” 2025) have evolved from experimental utilities into
integral components of modern software engineering workflows. At the
same time, academic prototypes continue to explore innovative user
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interactions and pedagogical applications, providing valuable insight into
future developments in programming tool design.

Despite their popularity and transformative potential, current
understanding of LLM-based assistants remains fragmented because much
of the literature focuses on human-computer interaction and user-experience
questions (e.g., Barke et al., 2023; Vaithilingam et al., 2022), while another
body of work focuses on product-level capability surveys and feature
comparisons (Heller, 2024; Sugi, 2024). This divide makes it difficult to
form a comprehensive view of usability, learning outcomes, and professional
implications.

This paper presents a meta-analysis synthesizing empirical user studies,
HCI findings, and detailed feature comparisons from leading commercial
and academic programming assistants. By combining these complementary
perspectives, we aim to bridge critical gaps in understanding how novices,
experts, researchers, and educators, engage with LLM-based tools and how
these interactions influence software development practices and education.
The analysis addresses several key questions. How do distinct user groups
benefit from or struggle with these tools? How do varying interface designs
impact user effectiveness and trust? What design strategies can align tool
capabilities with user needs and professional expectations?

The paper proceeds as follows. Section 2 outlines the methodology
and analytical framework used for the meta-analysis. Section 3 maps the
landscape of commercial and academic programming assistants. Section 4
presents synthesized findings for each user group. Section 5 discusses major
HCI themes and resulting design recommendations, and Section 6 offers a
discussion of implications. Section 7 concludes with directions for future
research and development.

METHODOLOGY

Literature Selection

Our meta-analysis employs a systematic literature selection process focusing
on recent studies and authoritative sources from 2021 through early 2025.
Sources include prominent academic databases including ACM Digital
Library, IEEE Xplore, arXiv, and other reputable repositories. Inclusion
criteria encompassed empirical studies, user-centered evaluations, systematic
literature reviews, and significant technical reports relevant to LLM-based
programming tools.

Additionally, we incorporated high-quality grey and pre-publication
sources, including official tool documentation, reputable industry reviews,
technical blogs, and early-access papers or preprints (e.g., arXiv manuscripts
and conference papers “in press”). These materials were selected for their
credibility, timeliness, and technical detail. Drawing on them made it possible
to include the most up-to-date information about tool capabilities, interface
models, and practical implications before those details appear in formal
publications.
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Analytical Framework

We adopted a qualitative thematic analysis approach to integrate findings
across diverse sources systematically. Initially, individual papers and reports
were reviewed to identify common themes related to user experiences,
interface interactions, learning outcomes, productivity impacts, and HCI
considerations. These themes were organized by user group: novices, expert
developers, researchers, and educators, to capture nuanced interactions and
outcomes.

Variations among sources were examined and reconciled through
comparison and discussion in the relevant parts of the analysis. This iterative
process focused on how findings converged or diverged across studies
representing different user groups. Emphasis was placed on identifying
recurring relationships between user experiences, interface characteristics,
and learning or productivity outcomes. Through this comparison, broader
trends and consistent patterns were identified, forming a thematic framework
connecting evidence from user research with technical and design features
of LLM-based programming assistants, providing a grounded basis for
discussing tool design implications and future work directions.

LANDSCAPE OF LLM-BASED PROGRAMMING TOOLS

Comparative Summary

A comparative summary table is presented below to highlight key features
and intended user audiences of prominent LLM-based programming tools:

Table 1: Comparative summary table.

Tool Interface Key Features Target Audience
Model
GitHub Inline, Chat  General code generation,  IT professionals,
Copilot ease of use developers,
students
Amazon Inline Security scanning, AWS developers,
CodeWhisperer vulnerability checks technicians
Tabnine Inline, Chat ~ Customizable models, IT professionals,
privacy-focused developers
Sourcegraph Inline, Chat  Deep repository context,  IT professionals,
Cody codebase navigation developers
Claude Code Inline, Chat  Agent-style workflow, Developers,
repository awareness researchers, IT
professionals
Academic Varied Test-driven development,  Researchers,
Prototypes (Interactive,  pedagogical guidance educators

Chat)




1234 Olivares et al.

Commercial Tools

Widely adopted commercial LLM-based programming tools include
GitHub Copilot (“GitHub Copilot,” 2025), Amazon CodeWhisperer
(“CodeWhisperer,” 2025), Tabnine (“Tabnine,” 2025), Claude Code
(“Claude Code,” 2025), and Sourcegraph Cody (“Cody,” 2025). These
tools primarily offer inline code completion, chat-based interactions, and
additional capabilities such as security scanning, reference tracking, and
contextual code understanding. GitHub Copilot, for instance, provides
inline suggestions and basic chat interactions that enhance coding speed
and reduce context switching. Amazon CodeWhisperer integrates security
scanning to warn users of potential vulnerabilities in suggested code, aiming
to enhance code quality and safety. Tabnine offers customizable model
selection and privacy-focused deployments, appealing to enterprise users
who prioritize data security. Claude Code introduces agent-style workflow
functions and repository awareness that support collaborative development
and integration with version-control systems. Sourcegraph Cody emphasizes
deep repository context, allowing developers to navigate and query large
codebases efficiently.

Academic and Research Prototypes

Academic prototypes explore innovative and diverse interactions, including
proactive Al assistance, test-driven code generation, and interactive
explanations within notebook environments (Chen et al., 2024; Fakhoury
et al., 2024; Mcnutt et al., 2023). These prototypes aim to push
the boundaries of user interactions by with features like test case
generation, enhanced debugging support, and pedagogically driven hints
and explanations. Notable examples include systems integrated into Jupyter
notebooks (“Project Jupyter,” 2025) that assist data scientists by suggesting
analytical next steps, facilitating iterative development, and reducing
cognitive load during complex data-analysis tasks (Mcnutt et al., 2023).

USER EXPERIENCE FINDINGS

Novice Programmers and Students

Novice programmers frequently leverage LLM-based tools for immediate
feedback, syntax correction, and learning support (Finnie-Ansley et al.,
2022; Kazemitabaar et al., 2024a). Empirical studies indicate that these
tools improve novices’ ability to complete programming tasks independently
and foster greater confidence in coding (Kazemitabaar et al., 2024a;
Vaithilingam et al., 2022). However, novices often struggle to critically
evaluate Al-generated suggestions, leading to potential over-reliance and
superficial learning (Prather et al., 2024; Vaithilingam et al., 2022). Studies
suggest that structured guidance, such as scaffolded learning prompts
or integrated code-validation mechanisms, improves novice outcomes by
reinforcing critical thinking and ensuring meaningful engagement with the
programming concepts (Kazemitabaar et al., 2024a; Prather et al., 2024;
Stamper et al., 2024).
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Professional Developers

For professional developers, LLM-based tools enhance productivity by
automating routine tasks, offering quick solutions to coding challenges,
and reducing cognitive load (Barke et al., 2023; Liang et al., 2024; Weisz
et al., 2025). Experienced users typically demonstrate greater proficiency in
evaluating Al-generated suggestions, thus maintaining high standards of code
quality (Barke et al., 2023). Professional developers express ongoing concerns
about code correctness, security risks, and potential disruptions in workflow
due to inaccurate suggestions (Dakhel et al., 2023; Sandoval et al., 2023).
Tools that integrate deep contextual awareness and provide transparency in
the reasoning behind code suggestions are particularly valued for reducing
uncertainty and fostering appropriate trust (Heller, 2024; Sugi, 2024).

Professionals also report that LLM-based assistants reshape collaborative
workflows by serving as an “always-available pair programmer” (Barke
et al., 2023; Weisz et al., 2025). These assistants can free up cognitive
resources, allowing developers to focus on higher-level design decisions while
delegating simple code and repetitive tasks to the Al (Liang et al., 2024).
However, several studies underscore that blind acceptance of Al-generated
code introduces technical liabilities and creates subtle bugs that may be
overlooked in early testing (Moradi Dakhel et al., 2023; Sandoval et al.,
2023).

Another critical consideration for professionals is workflow alignment.
Professional developers value tools that integrate with established version-
control systems, continuous-integration and continuous delivery (CI/CD)
pipelines, and security policies (Weisz et al., 2025). For example,
CodeWhisperer’s automated vulnerability detection resonates with teams
prioritizing DevSecOps practices, while Tabnine’s customizable deployment
options appeal to organizations with strict intellectual property and
privacy requirements (“CodeWhisperer,” 2025; Heller, 2024). Claude Code
further supports integration with version-control workflows, which benefits
collaborative development environments.

Overall, professional developers view LLMs as augmentative rather
than substitutive collaborators. They value tools that provide transparency,
rationale, and insight into model reasoning. This underscores the importance
of building interfaces that not only deliver accurate code but also provide
explainable and accountable Al partnerships (Liang et al., 2024; Sugi, 2024).

Researchers

Researchers benefit uniquely from LLM-based tools, using them to facilitate
experimental coding, streamline data analysis, and enhance teaching
methodologies (Chen et al., 2024; Mcnutt et al., 2023). For researchers,
assistants embedded in interactive environments such as Jupyter notebooks
markedly improve productivity and analytical depth by suggesting next-step
analyses and easing iterative exploration (Mcnutt et al., 2023). These tools
allow researchers to digest information in a conversational style, asking
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the LLM questions directly, instead of parsing through dense academic and
technical readings.

In “Guidance for Researchers and Peer-Reviewers on the Ethical Use
of LLMs in Scientific Workflows,” Watkins discusses how large language
models may assist researchers and editors in the peer review process by
flagging grammatical or stylistic errors, improving clarity, and enhancing
readability. This allows human reviewers to focus more on the substance
of a manuscript. The article also cautions that LLM outputs can include
errors or bias and emphasizes the importance of transparency, disclosure,
and clear standards to protect confidentiality and uphold research integrity
(Watkins, 2024). Conversely, LLMs can hinder the research process and are
not recommend for fact-checking (Dierickx et al., 2024; Narayanan Venkit
et al., 2025; Quelle and Bovet, 2024).

Educators

Educators adopt classroom-oriented systems to demonstrate coding concepts,
automate formative assessment, and create interactive learning experiences
that maintain student engagement (Kazemitabaar et al., 2024b; Lyu et al.,
2024). Nevertheless, ethical issues, including academic integrity, equitable
access, and appropriate attribution, remain pressing concerns that require
clear institutional guidelines and ongoing oversight (Becker et al., 2023;
Prather et al., 2024). Recent educator-centered research further highlights
that many of these concerns extend beyond technical errors to encompass
broader social and pedagogical harms, including shifts in student motivation
and the erosion of teacher agency (Feng et al., 2025; Harvey et al., 2025).
Educators also face challenges because most LLM-based tools were not
originally developed for educational use (Lieb and Goel, 2024), which can
lead to negative outcomes when classroom needs are overlooked. At the same
time, LLMs offer an aspirational goal of providing personalized tutoring for
individual students (Becker et al., 2023; Lieb and Goel, 2024; Stamper et al.,
2024), a capability that has long been out of reach. Recent work in Artificial
Intelligence in Education further argues that LLM-based tutoring systems
should be grounded in feedback theories from the learning sciences to support
both effectiveness and equity in educational settings (Stamper et al., 2024).

DESIGN AND HCI INSIGHTS

Trust Calibration

Appropriate trust calibration is essential in LLM-based programming tools
(Barke et al., 2023; Vaithilingam et al., 2022). Transparent explanations,
uncertainty indicators, and clearly communicated limitations help users build
accurate mental models of tool capabilities and prevent over-reliance or
under-utilization (Ibrahim et al., 2025; Moradi Dakhel et al., 2023; Sugi,
2024).

Trust calibration is not only about preventing blind reliance but also about
considering appropriate skepticism. Tools that provide rationales for their
outputs, cite training data sources, or communicate uncertainty enable users
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to engage critically with suggestions (Moradi Dakhel et al., 2023; Sugi,
2024; Vaithilingam et al., 2022). Studies have shown that when explanations
accompany code recommendations, users are more likely to detect errors and
are less likely to accept faulty completions (Liang et al., 2024; Sandoval et al.,
2023).

Cognitive Load Management

Tools should reduce cognitive load through seamless integration into
existing workflows and by providing context-aware suggestions (Barke
et al., 2023; Mcnutt et al.,, 2023; Weisz et al., 2025). This involves
minimizing interruptions and maintaining user engagement by anticipating
and addressing user needs (Liang et al., 2024).

While reducing cognitive load is a clear advantage of LLM integration,
poorly timed or overly detailed interventions can instead increase cognitive
effort. Effective designs should incorporate adaptive interfaces that sense user
intent and adjust assistance accordingly. For instance, concise completions
are most effective during routine coding, while richer, explanatory dialogues
support deeper learning in educational contexts (Liang et al., 2024; Mcnutt
et al., 2023).

Interface Modalities

Combining inline suggestions with interactive chat-based explanations
provides flexible interaction modalities that support diverse coding scenarios
and user preferences (Barke et al., 2023; Heller, 2024; Sugi, 2024). Designers
should ensure smooth transitions between these modes to preserve workflow
continuity and minimize context-switching (Liang et al., 2024).

Balance Between Automation and User Control

Designs must strike a careful balance between automation and user control
(Barke et al., 2023; Moradi Dakhel et al., 2023). Integrated verification
features, such as auto-generated tests or security scans, and easily reversible
overrides give developers continuous oversight and help ensure high-quality
code outcomes (Fakhoury et al., 2024; Sandoval et al., 2023).

Developers consistently emphasize the need for oversight mechanisms.
Features such as auto-generated unit tests (Fakhoury et al., 2024; Ouedraogo
et al., 2024), built-in security scans (“CodeWhisperer,” 2025; Sandoval et al.,
2023), and “explain this suggestion” functions promote LLM accountability
and ensure that automation complements the user rather than replaces
human judgement. Future designs should move towards interaction models
where humans remain the primary decision-makers and LLMs manage
mechanical or repetitive subtasks.

DISCUSSION

The findings of this meta-analysis indicate that the impact of large language
model (LLM)-based programming tools depends not just on what the tools
can do, but how users integrate them into their work or learning processes.
Across all user groups, a common pattern emerges: LLMs can either enhance
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or undermine user performance based on the degree of reflection and critical
engagement involved.

For novice programmers, these tools can be both supportive and risky.
Many students rely on LLMs to check syntax or explore alternative
approaches, which can build confidence and improve task completion
(Kazemitabaar et al., 2024a). However, when students lean too heavily
on the model to generate solutions, they lose opportunities for conceptual
understanding and independent problem solving (Prather et al., 2024).
Systems providing structured guidance or scaffolding show promise in
promoting learning without removing challenge (Stamper et al., 2024).
This design shift helps move LLMs from automatic solution providers
to interactive learning partners that reinforce understanding and skill
development.

For professional developers, the key challenge is integrating LLMs
productively within established workflows effectively. Developers appreciate
how LLMs can reduce repetitive coding tasks and help test new ideas (Weisz
et al., 2025), but the most effective use comes when the LLM is treated as
a collaborator rather than a shortcut. When developers review, verify, and
adapt model-generated suggestions instead of adopting them immediately, the
Al becomes a second reviewer rather than an unquestioned authority (Barke
et al., 2023). Future features such as explanations and testing prompts can
further align these assistants with professional standards and collaborative
team practices (Fakhoury et al., 2024).

For researchers and educators, LLMs open new opportunities for
teaching and collaboration. Researchers benefit from assistants embedded in
analytical environments that support iteration and reproducibility, although
continued attention to bias and data integrity remains essential (Mcnutt
et al., 2023; Watkins, 2024). Educators, meanwhile, face a related challenge
in guiding students towards responsible and meaningful use. Best results
occur when instructors describe these systems as learning aids that promote
reasoning and reflection rather than as tools for generating direct answers
(Harvey et al., 2025; Kazemitabaar et al., 2024b).

Overall, findings across user groups emphasize that the effectiveness of
LLMs is determined not by automation but by how individuals choose to
engage it. Future systems should encourage user curiosity, explanation, and
reflection, allowing users to benefit from the Al’s strengths while maintaining
agency and accountability (Liang et al., 2024). Ultimately, LLMs are not
replacements for human reasoning, but they can enhance it. When used
cautiously and correctly, learning, creativity, and productivity can be elevated
across all levels of expertise. The future challenge is to design and use
LLMs in ways that strengthen, rather than erode the skills that make human
programming effective in the first place.
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CONCLUSION

This meta-analysis offers a broad perspective on the current state and impacts
of LLM-based programming tools, synthesizing empirical insights, detailed
tool evaluations, and key HCI considerations. We identified clear benefits
across user groups, including improved productivity, enhanced learning
opportunities, and streamlined research and teaching processes. However,
significant challenges remain concerning code correctness, managing
cognitive load, and appropriately calibrating user trust.

Future research should prioritize longitudinal studies that examine the
long-term effects of LLM-tool use on programming skills and productivity,
detailed assessments of collaborative coding environments that integrate
AT assistance, and deeper investigations into ethical and legal implications.
Additionally, advancing design strategies that tailor tools to specific user
needs, enhance contextual understanding, and provide greater transparency
in output generated by Al systems will be crucial for maximizing user benefits
and minimizing potential drawbacks. Pursuing these research avenues will
help refine LLM-based programming assistants and ensure they better
support developers, researchers, and educators across evolving professional
and educational contexts.
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