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ABSTRACT

Robot-generated logs offer the most comprehensive record of machine behavior
and human-machine interactions in field settings, yet their technical complexity
renders them inaccessible to human factors researchers. This paper introduces
Robotic Journaling, a systematic four-step methodology for transforming technical
robot logs into analyzable narratives suitable for rigorous qualitative analysis. The
method comprises: (1) systematic log collection, (2) collaborative development of
translation codebooks with operators and engineers, (3) transformation of technical
logs into plain language narratives, and (4) application of chosen analytical approaches
to translated data. We demonstrate this methodology through its application to
the DARPA Subterranean Challenge, where NASA JPL’s CoSTAR team operated a
heterogeneous fleet of autonomous robots in underground environments. Through
Robotic Journaling, we translated 536 pages of fragmented logs from 151 days
of field testing into 228 pages of coherent narratives. While we use Grounded
Theory analysis of trust dynamics to illustrate how the translated narratives enable
qualitative research, this paper focuses specifically on detailing the Robotic Journaling
methodology itself rather than presenting analytical findings. This methodology
addresses a critical gap in human-machine teaming research by making field-
generated data accessible when direct observation is impossible or insufficient,
particularly vital in high-stakes Real users, Real systems, Real consequences (R3)
environments like space exploration, disaster response, and military operations. The
method is domain-agnostic and transferable to any research question that could
benefit from systematic analysis of robot logs.

Keywords: Human-machine teams (HMTs), Trust in autonomy, Robotic journaling, Real-world
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INTRODUCTION

The integration of humans and autonomous machines into Heterogeneous
Human-Machine Teams (HMTs) represents a transformative shift in how we
approach complex, high-stakes operations. From space exploration missions
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like NASA’s Mars 2020 to disaster response and military operations, these
teams combine human creativity, adaptability, and ethical judgment with
machine precision and data processing capabilities (Lee & See, 2004). As
autonomous systems become increasingly sophisticated and their deployment
contexts more diverse, understanding the dynamics of human-machine
collaboration has become essential for designing effective, trustworthy,
and resilient teams. Yet a fundamental methodological barrier prevents
researchers from fully leveraging the richest data source available for studying
these interactions: the robot-generated logs that capture every detail of
machine behavior and human-machine exchanges as they unfold in real-time.

The Data Accessibility Problem

Robot-generated logs represent the most granular and comprehensive
record of machine behavior and human-machine interactions available to
researchers. These logs capture detailed system behaviors, task outcomes, and
interaction sequences as they unfold in real-time, offering an unprecedented
window into the dynamics of HMTs. However, a fundamental barrier
prevents researchers from leveraging this rich data source: accessibility.
Robot logs are typically written by and for engineers, filled with technical
codes, acronyms, and fragmented status messages that are opaque to
human factors scientists and social science researchers. This creates a
critical methodological gap, preventing the application of rigorous qualitative
methods like Grounded Theory (Lai & To, 2014; Ji Young Cho &
Eun-Hee Lee, 2014) or quantitative text analysis to understand human
experiences with autonomous systems. While Grounded Theory has proven
valuable for analyzing complex social interactions in fields ranging from
healthcare to engineering (Kumar et al., 2016; Austin et al., 2020), its
application to robot-generated data has been limited by the technical opacity
of raw logs.

Our Proposed Solution and Its Values: Robotic Journaling

Against this backdrop, this paper introduces Robotic Journaling, a systematic
four-step methodology for transforming technical robot-generated logs into
analyzable narratives that preserve the richness of the original data while
making it accessible to diverse research communities. The method consists
of: (1) systematic collection of robot-generated logs, (2) consultation
with programmers and operators to develop translation codebooks,
(3) transformation of technical logs into plain language narratives, and
(4) application of researchers’ chosen analytical approaches to the translated
data.

Recent work has highlighted the importance of transparency and narrative
methods in robotics, with frameworks like RONAR translating robot
experiences into natural language (Wang et al., 2024) and Data Narrative
generating data stories with visualizations (Islam et al., 2024). Robotic
Journaling builds on these insights while specifically addressing the challenge
of making field-generated logs accessible for rigorous qualitative analysis.

The need for this methodology extends across multiple domains where
humans work alongside autonomous systems. In controlled laboratory
settings, it enables researchers to capture subtle interaction patterns that
might be missed by traditional observation methods. In industrial settings,
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it facilitates analysis of operator experiences with collaborative robots. In
healthcare, it can reveal patterns in human-robot surgical teams. Most
critically, in high-stakes R3 environments, involving Real users, Real
systems, and Real consequences, this method becomes essential when direct
observation is impossible or insufficient.

R3 environments present unique challenges that make this methodology
particularly valuable. These settings, such as space exploration, disaster
response, or military operations, are characterized by genuine stakes,
operational complexity, and often, limited researcher access. The COVID-19
pandemic highlighted this challenge acutely: researchers could not physically
observe field deployments, yet the need to understand human-machine
teaming remained critical. In such contexts, robot-generated logs become
the primary, sometimes only window into team dynamics, making their
accessibility crucial for advancing our understanding of trust, coordination,
and system resilience in heterogeneous HMTs.

Case Study: DARPA SubTerranean Challenge

The methodology of Robotic Journaling we present was applied to data
from the DARPA Subterranean Challenge, a case where the Jet Propulsion
Laboratory’s CoSTAR team operated a fleet of robots in underground mines,
caves, and tunnels. The team generated 536 pages of logs across 151 days of
field tests, demonstrating how Robotic Journaling enabled the application
of Grounded Theory to examine trust dynamics in heterogeneous HMTs.
The method’s utility can be applied to study communication patterns, failure
recovery, workload distribution, and other relevant phenomena.

This paper discusses the Robotic Journaling methodology, which is an
integrated approach to narrative methods in robotics. It demonstrates how
robot-generated logs are collected, translated into plain language narratives,
and used for analytical approaches like Grounded Theory. The methodology
is domain-agnostic and applicable to any research question that could benefit
from systematic analysis of robot-generated logs. The paper also reviews
related work on narrative methods in robotics and positions its contribution
within the broader human-machine interaction research landscape.

THE ROBOTIC JOURNALING METHOD: PROCESS AND APPLICATION

To address the problems seen in robot logs and bridge the gap between
lab-constrained experiments and R3 HMTs, we propose a new method for
translating robot logs into plain-language narratives, Robotic Journaling.
Robotic Journaling is a two-stage method designed to make technical data
amenable to human-centered analysis. The process is iterative and requires
close collaboration between researchers and the operational team. Robotic
Journaling consists of two main steps: codebook definition and structured
narration.

Figure 1: Robotic journaling methodology (Nhut et al., 2025).
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Step 1: Log Collection

The foundation of the Robotic Journaling method is the systematic
acquisition and curation of raw robot-generated logs. This initial step
is critical, as the integrity of all subsequent analysis depends on the
completeness and organization of the source data. The process involves:
systemic collection protocols, storage considerations, and metadata
preservation.

DARPA SubT Example: The CoSTAR Dataset

The operational logs from NASA JPL’s CoSTAR team, generated during the
DARPA Subterranean Challenge, document 151 days of field testing across
three challenging underground environments: abandonedmines, natural cave
systems, and urban subway tunnels. These logs are not just autonomous
system dumps but a hybrid record of machine state and human response,
capturing both machine and human response.

• Robot Status: Low-level system messages (e.g., “LO front end on Husky
taking >20s to reset map”).

• Human Operator Actions: Commands issued, interventions performed,
and manual overrides.

• Interface Performance: Notes on operator interface functionality, latency
issues, or display errors.

This dataset was stored in a structured repository with associatedmetadata
tags for each testing day and location, providing the essential, high-fidelity
raw material required for the Robotic Journaling process. A representative
snippet of this raw log data is presented in Table 1 to illustrate its initial
complexity and technical nature.

Table 1

Timestamp System/Agent Message

Robot Status 2022-08-14 10:15:42a Husky1 INFO: LO front end
initialized.

Human Operator
Actions

2022-08-14 10:16:01 Operator Console CMD: Deploy Spot unit
to Waypoint

Robot Status 2022-08-14 10:17:22 Operator Alpha WARN: LO front end
on Husky taking >20s
to reset

Human Operator/
Interface Performance

2022-08-14 10:17:55 Husky1 Note: Attempting to
reset localization via UI.
No response

Step 2: Codebook Development Through Expert Consultation

Unifying and normalizing the definition of acronyms and technical jargon
is a crucial step in Robotic Journaling. Much of the difficulty in
understanding the robot logs lies in knowing the different definitions
of the terminology used. An additional challenge with the robot logs
is the variance in documentation due to different operators. To address
these issues, researchers met with CoSTAR operators to create a shared
codebook for consistent interpretation. The shared codebook documented
technical terms, abbreviations, and operator shorthand found in the logs. To
ensure comprehensive definitions, multiple meetings occurred between the
researchers and CoSTAR operators. The resulting shared codebook helped
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narrators have a standardized interpretation. For example, terms such as
“LO front end” were expanded and clarified to “localization front-end, a
state estimation algorithm using LiDAR for mapping and odometry.”

Collaborative Codebook Development

The first and most critical step is to create a shared lexicon. Technical
terms and acronyms are not standardized and can vary between operators
and subsystems. Without a common understanding, any subsequent analysis
would be flawed.

• Process: We conducted multiple workshops and interviews with the JPL
CoSTAR operators and engineers. The goal was to collaboratively define
every term, acronym, and piece of shorthand found in the logs.

• Outcome: A living codebook that served as a translation key. For
example, from the log entry “H4 going even though mission bpmn
stopped”, the term “bpmn” was decoded to mean “Business Process
Modeling Notation, a structured list and logic flow, diagram method”.
This step grounds the data in the operators lived experience and ensures
semantic accuracy.

Codebook Snippet

Terms Meaning

OPS Operations (normally the operator and pit crew teamwork and
preparation).

LAMP Location and mapping system. It combines a lot of perception.
Calibration is required to figure out the origin point of where
it is.

rviz 3D visualizer for the Robot Operating System; developer tool,
quick to prototype. Provides visualized data streams, displayed
on UI.

CASE STUDY

Application to the DARPA SubT Challenge We applied Robotic Journaling
to data from NASA JPL’s CoSTAR team, which fielded a heterogeneous
fleet of robots (e.g., quadrupeds, drones) in the DARPA Subterranean
Challenge. This competition involved mapping and navigating unpredictable
underground environments, representing a quintessential R3 scenario. Our
dataset consisted of 536 pages of raw operational logs from 151 days of field
testing. Through Robotic Journaling, this was translated into 228 pages of
structured narratives, creating a foundational dataset for qualitative analysis.

Step 3: Translation to Plain Language Narratives

Using the shared codebook, the robot logs were translated into plain
language. The process began with a line-by-line translation to preserve
the temporal sequence of the original, time-stamped logs. For example,
the entry “LO front end on Husky taking >20s to reset map. Delays
odometry.” was translated to “The Husky robot’s localization system
required more than 20 seconds to reset its map, which delayed its ability to
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track movement.” This initial approach, however, often resulted in stilted
and fragmented accounts. The methodology, therefore evolved towards
synthesizing multiple log entries into fluid, paragraph-based narratives that
emphasized operational significance over technical detail. For instance, later
narrators would synthesize various error messages into a coherent account:
“The green LED lights disrupted the robot’s camera view, causing shadows
and image distortion. Attempts to correct the issue using auto-exposure
were unsuccessful, and the Hammer camera experienced repeated failures
due to invalid pixel format errors, which compromised the consistency
of visual data collection.” This final output of structured, plain-language
narratives provides the foundational dataset for subsequent thematic coding
and analysis.

Structured Narration

Using the codebook, the logs are translated into plain language, evolving
from line-by-line to synthetic narratives.

• Initial, Direct Translation: Initially, each log line was translated literally
to preserve temporal fidelity. This produced an accurate but stilted and
fragmented account, difficult for thematic analysis.

• Evolved, Synthetic Narration: The process matured into writing narrative
summaries that synthesized multiple log entries into fluid paragraphs.
The focus shifted from literal translation to capturing the operational
significance of events the “so what” for the team. This output reads like
a story of the mission, making it ideal for qualitative coding.

Example: Structure Narration Before and After

Initial, Direct Translation Evolved, Synthetic Narration

[14:15] Spot1 has a messy
map - maybe because of lidar
calibration arcs interface
[14:17] Husky1 deployed -
moves to right
[14:18] Artifact images are
very bright - image
enhancement makes it very
hard
- Set up for the old images?
[14:19] RViz froze - lagging -
can’t control
- Disabling interactive marker
- Too many frontiers
- High CPU usage?
- Loop closure is taking up a
lot of CPU
- LampPGO crashed on the
base station
[14:20] Can not operate RViz

Spot1 does have a messy map, and it
may be due to the calibration of the
LIDAR which maps the area in 3D as
a set of points for the robot to
navigate.
Husky1 is then deployed and moves
to the right.
The images of the artifacts are very
bright, and the image enhancement
makes it difficult to fix. It may need
to be switched to the old image
settings.
Not only that, the 3D visualizer for
the Robot Operating System is
lagging and it can’t be controlled. To
fix it the interactive markers are
disabled, it shows there are too many
frontiers, and the central processing
unit usage may be too high.”
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Step 4: Analysis Application

The translated narratives create a foundational dataset for applying a wide
range of analytical methodologies, chosen by the researcher based on their
specific questions. The critical utility of this approach is its ability to facilitate
research when direct, in-person observation is impossible, a challenge
starkly highlighted during the COVID-19 pandemic when field access was
prohibited. In such R3 contexts, robot-generated logs become the primary,
and often sole, record of human-machine interaction. This was the case for
our remote analysis of the DARPA SubT team; based in California and remote
locations, the logs were indispensable for our team to “observe” missions
conducted in distant underground environments. To demonstrate the utility
of the translated narratives, we applied a Grounded Theory analysis to
explore trust dynamics. For instance, the narratives allowed us to identify
emergent themes like ‘Asymmetrical Accountability,’ where operators were
held responsible for system-level failures, a nuance invisible in the raw
log entry ‘LO front end fault.’ This brief example illustrates how Robotic
Journaling unlocks socio-technical themes for qualitative inquiry, expanding
HMT research, regardless of the specific qualitative or mixed-methods
approach chosen.

DARPA SubT Example

The study used Grounded Theory to analyze trust dynamics in human-
robot teams, revealing socio-technical patterns that were not present in raw
system logs. The reconstruction of narratives revealed emergent themes like
“Asymmetrical Accountability,” where human operators were responsible
for system-level failures despite their technical origins. This highlights how
Robotic Journaling transforms opaque log entries into valuable research data
for human-factors analysis, revealing the importance of understanding trust
dynamics in human-robot teams.

DISCUSSION

Broader Applications Beyond R3 Environments

Applications of the Robotic Journaling process extend beyond the R3
environments in this study. In the domain of Robotics and HRI, this
framework can be applied to Self-Assessment and Resilience, robotic long-
term memory, and Reinforcement Learning. Frasca and Scheutz (2022)
developed a framework that enables robots to self-assess their expected task
performance, enhancing autonomy and reliability in robotic systems. When
applied to the Frasca and Scheutz (2022) framework for self-assessment,
the Robotic Journaling process can also offer interdisciplinary researchers
a mechanism for systematically analyzing self-assessment of expected task
performance, as well as a powerful tool for autonomy engineering and design.
The Robotic Journaling process has another broader use as a forensic tool
when implemented in static storage, similar to a flight data recorder (FDR)
used in aviation by the NTSB. When implemented in this manner, robot-
generated logs can also be used in HSI testing and HAT/HMT training
environments.
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Methodological Considerations and Limitations

The manual translation and analysis process, while rich in expert insight,
presents challenges for scalability and consistent reliability. “Although there
has been progress in verifying properties of neural networks or learning-
enabled systems, critical research is still needed to advance scaling, and
to pursue novel (beyond scaling) approaches.” (p. 53). Furthermore, in
their exploration of Verification of Machine Learning–Enabled Systems, The
National Academies of Sciences, Engineering, and Medicine (2025) argue
that large language models (LLMs) pose additional challenges, making it
infeasible to scale existing verification methods to provide meaningful safety
guarantees in these systems. One must embrace a “trust but verify” approach
while new paradigms evolve.

While implementing a GraphRAG system using Neo4j’s graph-based
knowledge representation does provide traceability, it is not without errors.
According to Lettria (2025), implementing Neo4j’s graph-based knowledge
representation delivered 20–25% higher accuracy than traditional RAG in
real-world applications. However, this still indicates a potential for error,
reinforcing that keeping a human in the loop to verify and investigate results
is the essential path forward for ensuring quality and reliability.

Future Directions for the Methodology

A primary future direction is to scale the Robotic Journaling process
by developing AI-assisted tools, with the core contribution remaining
in the human-centered methodological framework itself. A promising
pathway involves automating narrative generation to enhance scalability and
consistency, directly addressing the validation concerns noted in Section 4.2.
We will build upon the significant domain-expert work already completed
in this study by implementing the findings in a Neo4j graph database
with ontology governance, creating a reusable ontology, a combination of
Knowledge Graph Retrieval-Augmented Generation (GraphRAG) with a
fine-tuned Large Language Model (LLM) grounded by this ontology, and
we can automate the transformation of system logs into traceable, plain-
language narratives. This moves the method from manual interpretation
towards near real-time analysis. Once this infrastructure is in place, adding
new environments and connecting graph nodes for future missions like
CADRE and Endurance becomes straightforward. This will allow for the
continued application and validation of this framework for unlocking
the stories hidden within machine data, strengthening human-machine
collaboration where it matters most.

CONCLUSION

In conclusion, Robotic Journaling addresses a critical methodological
gap in human-machine teaming research by systematically transforming
opaque, technical robot logs into analyzable, plain-language narratives.
This four-step methodology, encompassing systematic log collection,
collaborative codebook development, translation into structured narratives,
and application of analytical approaches, successfully bridges the divide
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between engineering data and human-factors research. The application
of this method to the DARPA Subterranean Challenge, where 536 pages
of fragmented logs were translated into 228 pages of coherent accounts,
demonstrates its practical utility in high-stakes R3 environments where direct
observation is impossible. By making rich, field-generated data accessible, the
methodology enables rigorous qualitative analysis of complex socio-technical
phenomena, such as trust dynamics and asymmetrical accountability. While
the current process is manual, future work in AI-assisted automation
promises to enhance scalability without sacrificing the essential human-
centered interpretive framework. Ultimately, Robotic Journaling provides a
foundational, domain-agnostic tool for unlocking the stories within machine
data, thereby strengthening the design and resilience of human-machine
teams in critical operations from space exploration to disaster response.
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