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ABSTRACT

While the international adoption of Autonomous Vehicles (AVs) is imminent, cross-
cultural user expectations remain poorly understood. In this study we utilized a
survey with 57 questions prepared in English, German, and Spanish languages,
distributed in the United States (n = 52), Germany (n = 64), and Panama (n = 41),
that asked 157 participants about their personal driving behaviors as well as their
expectations from Self-Driving Cars (SDC). Several novel behavior and Al trust metrics
are generated from the responses that show clear differences in expectations of
autonomous technologies depending on the demographic sampled.
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INTRODUCTION

In the last decade, it has become apparent that the technologies powering
self-driving cars are maturing at a rate that makes them a technological
inevitability. The current standard for levels of driving automation is defined
by SAE International’s SAE J3016 Levels of Driving Automation. The first
three levels, 0, 1, and 2, vary from no driving automation to partial driving
automation where the human driver monitors the road all the way to level 5
the vehicle is fully capable of automation in all scenarios. While self-driving
cars are a certainty, the large-scale adoption of self-driving cars isn’t so clear.
Current research accordingly points to a grim outlook on people’s perception
of the technology. In 2021, Morning Consult surveyed 2200 adults in the
United States and found that 47% of those surveyed believe autonomous
vehicles are less safe than their human driven counterparts and that only 22%
of those surveyed believe that autonomous vehicles are safer than a human
driver (Teale, 2021). With nearly half of the survey population having serious
doubts about the technology on the precipice of its arrival, it becomes clear
that research must be conducted in improving consumer trust in self-driving
cars (Shahrdar et al., 2018).

LITERATURE REVIEW

Research conducted by Lee et al. suggests that there are several factors
affecting the adoption of self-driving cars. These factors include the perceived
usefulness, self-efficacy, perceived risk, and psychological ownership to the
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vehicle (Lee et al., 2019). Underlying most of these factors is the inherent trust
a user has with the self-driving technology. It has been found that trust is a
key factor in the person’s willingness to accept the technology and is largely
shaped by their prior experiences (Gangadharaiah et al., 2023).

Additional survey studies have shown that people want utilitarian
autonomous vehicles (Bonnefon, Shariff and Rahwan, 2016) that maximize
the global safety of all members of society. The issue of course arises that
any utilitarian framework puts the owner of the self-driving car at risk under
certain conditions which comes at odds with the trust demands users have
with autonomous vehicle technologies. Shariff et al. (2017) proposes that
the discussion of risk needs to be posed in terms of “absolute risk” rather
than relative risk as by driving a self-driving car your total risk of injury
is diminished therefore one should not worry about edge cases where your
safety may not be prioritized. When considering things from an absolute
perspective users may be more likely to buy into a self-driving car as their
chances of survival on any given drive are overall maximized by doing so.

One method of cultivating trust for self-driving cars is to improve on
human-machine interaction, by designing self-driving cars in a way that
communicates to passengers and have them play a more active role in the
experience one can deliver a more trustful system for users, e.g., adaptive
mood control (Nojoumian, 2021) and adaptive driving mode (Nojoumian,
2022). This is supported by research conducted by Hartwich et al. where
evidence suggests that even given a SAE Level 4-5 system where no human
interaction is required, the introduction of monitoring tools significantly
improves passenger trust (Hartwich et al., 2021). Further research conducted
by Hartwich et al. shows that the significance of the first experience with
self-driving cars greatly impacts the trust one associates with the technology
(Hartwich et al., 2019).

In addition to the first experience being significantly impactful to users’
perception of the technology, research from Shahrdar et al. shows how
trust is greatly affected by the driving style used and that defensive driving
builds more trust than aggressive driving in virtual reality simulated tests
(Shahrdar et al., 2019). These tests also showed that while initial experiences
were important, trust in the system can be rebuilt following faulty behavior
given enough time experiencing safer and more defensive driving from the
self-driving car.

Furthermore, the amount of control a user has seems to play strongly into
a user’s ability to trust a given system. In the classical scenario of a person
being chauffeured passengers often report that there is an increased level of
discomfort while being a passenger as compared to an active driver (Ittner
et al., 2020) and it appears that this analogue translates very well to the self-
driving car scenario; yet, there is still a decreased amount of trust for robotic
drivers versus a human driver given equivalent driving behaviors as shown
by Miihl et al. (2020). This posits that not only do self-driving cars have
to match human driving performance but exceed it in order to earn similar
levels of trust. One must then consider methods of increasing trust in the
system. Beyond increasing the interactions passengers can experience with
a self-driving car, one can also modify the driving style to increase trust in



Cross-Cultural Expectations From Self-Driving Cars 139

the system. Research conducted by Basu et al. showed that a more defensive
driving style led to higher trust in autonomous driving scenarios.

Interestingly, when participants were surveyed on their driving preferences
for self-driving cars, they responded that they would want an experience
similar to their own driving style. However, when passengers were placed
in a simulated driving scenario it was found that they preferred a driving
style that they believed was their own but instead was a much more
conservative driving style (Basu et al., 2017). This coincides with research
conducted by Hajiseyedjavadi et al. which showed that in a simulator drivers
preferred their own driving styles over a faster one but still provided negative
feedback when replaying their own driving style on urban roads versus rural
roads suggesting that environmental condition plays a significant part in
preferred driving style (Hajiseyedjavadi et al., 2022). These results are partly
supported by Dettmann et al. which showed that younger drivers preferred
autonomous driving styles that are similar to their own; however, older
drivers preferred a more aggressive driving style to their own. Dettmann also
concludes by stating the main factors in driving style preference depend on
“speed, acceleration and deceleration behavior as well as distance control”
(Dettmann et al., 2021).

In another study done by Schliiter et al. it is found that technological
affinity and skepticism to the technology should also be considered when
designing adaptive driving style autonomous vehicle technologies (Schliiter
et al., 2021). Further research conducted by Bellem et al. showed how
participants in a simulation study preferred driving styles that minimized
acceleration and jerk when performing driving actions such as lane changing.
Bellem et al. also reported that personality traits associated with participants
did not have any significant observable effects on autonomous driving
preferences (Bellem et al., 2018).

Similar results were observed by Craig et al. where surveyed participants
showed that they expect a self-driving car to behave in a slightly less
aggressive manner than their own driving style (Craig and Nojoumian, 2021).
Methods proposed by Park et al. suggest adapting the driving behavior based
on EEG feedback to establish and maintain trust in the system (Park and
Nojoumian, 2022; Park et al., 2018).

With these questions in mind, we must further consider how users will
respond with these technologies outside of the demographics in which
research is collected. There is a great question as to how research participants
are biased by the infrastructure and cultural norms of the country in which
research takes place. There are some surveys that provide an international
view such as research conducted by Deloitte in 2020 which provided
responses by country (South Korea, Japan, United States, Germany, India,
China) detailing the percentage of consumers who believe SDCs will not
be safe. The results provided by Deloitte in 2022 for most countries follow
United States sentiments (50% belief they will not be safe) with some outliers,
such as China whose survey data suggests a more trusting sentiment and India
whose survey data suggests a less trusting sentiment.

With most of the self-driving car research being conducted and tested
domestically within the United States from many Silicon Valley startups,
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it becomes challenging to understand the global needs of this technology
when so much of this research is based on the experiences of US drivers
on American roads. Throughout this paper we establish new scales through
surveys that allow measurement of various driving behaviors and expected
behaviors from self-driving cars. Using these scales, we provide evidence
to suggest that self-driving car behaviors should be tailored to region
expectations to create a self-driving car experience more consistent with a
driver’s own driving expectations.

QUANTITATIVE MEASUREMENT

We surveyed 157 people across the United States, Germany, and Panama
that were recruited through local-networking and through PollPool.com.
These regions were chosen as the U.S. and Germany represent two global
hubs of automotive manufacturing and are leading the charge in self-driving
technologies at scale. In contrast, Panama was chosen as an emerging market
due to its high number of consumer sales across Central America where
in 2019 it had the highest number of vehicles registered or sold in the
region (Carlier, 2021). Each question asked can be related to a quantitative
value to define a Driving Behavior Aggressiveness (DBA), Self-Driving Car
Aggressiveness (SDCA), Al Driving Mechanics Trust (AIDMT), general Al
Trust (AIT), and Driver Safety Score (DSS) metrics. Each question’s encoded
score can be valued between 0 and 1, where a score of 0 represents a cautious/-
conservative action, a score of 0.5 represents a moderate action, and a
score of 1 represents a more aggressive action. Responses from highway
based and non-highway-based questions are averaged together to provide
a more general scoring of the driver’s aggressiveness in all situations. The
same method was applied to questions related to SDCA questions across
highway and non-highway questions. For DBA scores, a score of 0 represents
a conservative driver and a score of 1 represents an aggressive driver. For
SDCA scores, a score of O represents a conservative SDC and a score of
1 represents an aggressive SDC. These scores can then be used to contrast
expectations of a SDC to their own driving behaviors. As a prerequisite to
most consistency and reliability tests as it relates to new scales the assumption
of unidimensionality of the scale must be proven. In this survey, we introduce
5 new scales to measure various driving behaviors based on survey responses.
These scales are constructed from a subset of questions we believe to relate
to a larger given metric. To prove that these questions are unidimensional,
i.e., they measure a single larger factor we consider a confirmatory factor
analysis (CFA) of these questions. The CFA analysis considered how each
item in a scale related to a single variable fitted to polychoric correlations
to account for the categorical nature of Likert-type scales (Flora, 2020).
Of interest to our study is the Chi-Square, Comparative Fit Index (CFI)
and Tucker-Lewis index (TLI). Root mean square error of approximation
(RMSEA) is also provided but should only lightly be considered for this study
due to known issues which underestimate the model fit when the number
of degrees of freedom of the model and the sample size is small which is
the case with our analysis (Kenny et al., 2015). The fit parameters for each
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scale can be seen in Table 1. These results show that the y?2 for each scale
is greater than .05 and thus non-significant and the values for the CFI and
TLI are greater than 0.9 indicating a strongly fitting unidimensional model
constructed from the items in each scale, finally the RMSEA metrics show
a moderate fit on the given data. To provide validity to our analysis, the
consistency and reliability of each test must be validated. While Cronbach’s
Alpha is often used for this purpose in literature, it rarely is applicable to
real data as it assumes tau-equivalence of the items within each set (Sijtsma,
2009; Ten Berge and Socan, 2004). Further, if this requirement is not met,
the reported Cronbach’s alpha value will underestimate the reliability of the
test. To get around these issues we will consider the more modern measure
of reliability known as McDonald’s Omega (w,) (McDonald, 2013) which
takes a factor analysis approach to deriving correlations between items.
McDonald’s Omega maintains the same range and threshold of accepted
consistency as Cronbach’s Alpha where values greater than 0.7 are considered
acceptable. Our results shown in Table 1 for McDonald’s Omega exceed 0.7
confirming good reliability for all five scales.

Table 1: Goodness of fit metrics.

Scale x?2 CFI TLI RMSEA o

DBA 0.122 0.988 0.978 0.051 0.788
SDCA 0.074 0.989 0.978 0.072 0.863
AIDMT 0.101 0.997 0.995 0.082 0.908
AIT 0.055 0.995 0.991 0.083 0.896
DSS 0.353 0.966 0.945 0.063 0.705

RESULTS: STATISTICALLY SIGNIFICANT MEASURES

We compared the scores from our defined quantitative metrics (DBA,
SDCA, AIDMT, AIT, and DSS) against the collected demographic data to
identify statistically observable differences, both within national populations
and from an international perspective. We compared distributions using
single-sided and two-sided Mann-Whitney U tests. For analyses within
a single country, results were considered significant if the p-value was
less than 0.05. In comparisons involving multiple countries, we applied a
Bonferroni-corrected alpha (Dunn, 1961), requiring a p-value of less than
0.016 to control for Type I error. For significant findings, we employed
additional statistical tools to provide more context. Confidence intervals
describing the estimated locational shift between distributions were produced
using the Hodges-Lehmann (HL) estimator (Hodges & Lehmann, 1963),
bootstrapped with 10,000 iterations. We also report Cliff’s § (Cliff, 1993)
to measure the effect size, which describes the tendency for scores in one
group to be higher than another. Cliff’s 6 is measured on a scale of —1
to +1, where O represents perfect overlap between groups. Select results
are summarized in the following list and described in statistical detail in
Figure 1 (a)-(g).
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AIT | U Statistic | P-Value | HL Estimate 95% Cl Cliff’s &

<.5 4089.0 0.000 107 (0.071,0.178) -.29

>.5 5025.0 0.596 0.000 (-0.035,0.071) | -0.04

(a) International DBA v. SDCA for High AIT Scores compared to Low AIT scores
Country U Statistic | P-Value | HL Estimate 95% CI Cliff’s 6
Germany 2821.0 0.001 -0.071 (-0.178,-0.035) | 0.29
Panama 1025.5 0.040 -0.071 (-0.178, 0.000) 0.22
International 14761.5 0.001 -0.071 (-0.142, 0.000) 0.19

(b) Significant DBA v. SDCA Scores Across Multiple Countries and Combined International Result

Scale U Statistic | P-Value | HL Estimate 95% CI Cliff’'s ¢
DBA 1342.0 0.006 -0.107 (-0.178, -0.035) 0.31
SDCA 1383.0 0.002 -0.142 (-0.214, -0.071) 0.35
AIDMT 1477.0 0.000 -0.250 (-0.333, -0.125) 0.44
DSS 1484.0 0.000 -0.107 (-0.178, -0.071) 0.45

(€) America vs Panama — Distribution Comparison

Scale U Statistic | P-Value | HL Estimate 95% CI Cliff’s 6
DBA 1959.5 0.000 -0.142 (-0.214, -0.071) 0.45
SDCA 1770.0 0.003 -0.142 (-0.214, 0.000) 0.31
AIDMT 1823.0 0.001 -0.208 (-0.291, -0.061) 0.35
DSS 1752.5 0.005 -0.071 (-0.142, 0.000) 0.30

(d) Germany vs Panama — Distribution Comparison

AIT Question | U Statistic | P-Value | HL Estimate 95% C1 Cliff's 6
5 1739.5 0.005 -0.250 (-0.250, 0.000) 0.28

(e) Germany vs Panama — Trust Questions

AIT Question | U Statistic | P-Value | HL Estimate 95% CI Cliff’s 6

4 2105.5 0.004 -0.250 (-0.250, 0.000) 0.27
() America vs Germany — Trust Questions
AIT Question | U Statistic | P-Value | HL Estimate 95% CI Cliff’s 6
2 1291.5 0.014 -0.250 (-0.250, 0.000) 0.26
6 1393.5 0.001 -0.250 (-0.250, 0.000) 0.35

(g) America vs Panama — Trust Questions

Figure 1: Statistical results.

International DBA and SDCA Metrics: Drivers preferred more
conservative self-driving cars than their own style (p = 0.001). Higher AIT
scores are correlated with a more aggressive SDC driving style more similar
to their own, while low AIT scores maintain preference for conservative
SDCs (p<0.001).

United States: Higher trust in Al driving mechanics (AIDMT) but lower
overall technology trust (AIT) (p = 0.03).

Germany: Preference for conservative SDCs over own behaviors
(p = 0.001); higher trust in Al driving mechanics (AIDMT) but lower overall
technology trust (AIT) (p = 0.007).
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Panama: Preference for conservative SDCs over own driving behaviors
(p = 0.040).

US vs Germany: The US showed higher trust for navigation through
crowded pedestrian areas compared to German respondents (AIT question
4) (p = 0.004).

US vs Panama: The US scored higher on DBA (p = 0.006), SDCA
(p = 0.002), AIDMT (p<0.001), and DSS (p<0.001). The US showed higher
trust for safety prioritization (AIT question 2) (p = 0.014) and unmanned
vehicle navigation (AIT question 6) (p = 0.001).

Germany vs Panama: Germany scored higher on DBA (p<0.001), SDCA
(p = 0.003), AIDMT (p = 0.001), and DSS (p = 0.005), with similar AIT
scores. Germany showed higher trust for exact destination navigation (AIT
question 5) (p = 0.0095).

The potential causes for the observed differences could be a result of several
factors. One factor could be the difference in road quality. According to the
road quality indicator provided by the World Economic Forum (Schwab,
2022) US and German roads score significantly higher than all Central
American roads and US and German roads share a similar score of 5.5 and
5.3 respectively.

One may also consider the digital adoption index (DAI) provided by
the World Bank which shows the US and Germany having a higher DAI
than most Central American countries (World Development Report 2016:
Digital Dividends,2016). The low adoption rate of digital technologies could
be one cause of the lower trust observed in Al metrics measured. Overall
understanding the proper context driving these differences will be key in
delivering autonomous vehicles and Al technology internationally.

CONCLUDING REMARKS

Our research concludes that there exist observable differences in the
quantitative metrics defined across the United States, Germany and Panama.
At an international level, comparing the three countries survey results
combined, this analysis found that drivers were more willing to engage with
a self-driving car that had a more aggressive driving style similar to their own
if they had a higher trust towards Al technologies, based on their AIT scores,
while drivers who were distrustful of Al technologies preferred a self-driving
car that was more conservative than their own driving style. When comparing
individual countries further observations are made.

Of note, Panama had the lowest average SDCA score that deems a much
more conservative SDC experience is requested in that part of the world as
compared to both the United States and Germany, which measured a much
higher average SDCA score. Furthermore, when comparing Panamanian
respondents to German respondents, statistical differences were found in
almost all quantitative measurements suggesting either a vastly different
technology should be developed for Panamanians, or a completely different
strategy should be employed for social acceptability of SDCs in that
region.
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Further work on this study can be conducted by expanding the sample
size of the nations surveyed as well as increasing the number of nations
surveyed to get a better understanding of the global needs of the SDC
technology. Autonomous vehicles are being deployed on the roads rapidly
with potentially new features, such as safety reasoning (Nojoumian, 2025a),
risk awareness and avoidance (Nojoumian and Skaug, 2025b, 2025a),
vulnerable occupant detection (Nojoumian, 2025b) and speed management
(Nojoumian, 2024). These technological advancements will certainly affect
the whole trust-in-AV landscape in the new future, especially when it comes
to mixed traffic situations involving self-driving cars and human-driving
vehicles. Therefore, new studies must be conducted to better understand how
human trust in AVs will be evolved over time.
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