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ABSTRACT

As population ages, there is an immense need to identify reliable biomarkers
that reflect biological age, which is representative of the cumulative burden of
physiological decline across all organ systems. The current model for estimating the
systemic assessment of biological age relies on epigenetic and multiomic signatures,
but there remains a gap in the literature regarding the modular assessment of
organ-specific aging. We describe a conceptual and evidence-based framework for
evaluating organ-specific aging biomarkers across major physiological systems and
integrating them with systemic aging metrics to construct a holistic assessment of
biological age. We reviewed and critically appraised emerging ageing biomarkers for
the cardiovascular (VO max, pulse wave velocity), hepatic (ALT, GGT, elastography),
renal (eGFR, cystatin C), pulmonary (FEV1), immune (hs-CRP, T-Cell Senescence
Markers), musculoskeletal (grip strength, DEXA-derived lean mass), neurocognitive
(processing speed, MRI volumetrics), endocrine (IGF-1), and integumentary (dermal
elasticity) systems. We evaluated these biomarkers and their relationship to the
trajectory of age-related decline, response to interventions, and prognostic ability for
morbidity, frailty, and mortality. The overall ageing trajectory can be estimated using
a tiered model that integrates organ-level biomarkers with systemic DNA methylation
indices (Horvath, GrimAge, DunedinPACE), blood-based aging calculators (PhenoAge,
inflammaging indices), and functional aging metrics (e.g., gait speed, reaction time,
sleep architecture). This review also discusses the practicality of biomarker selection
based on feasibility, invasiveness, cost, and interpretability. In conclusion, this work
advocates for a modular yet integrated approach to biological age assessment that
captures both organ-level and systemic aging signals. We emphasize the importance
of validated outcome measures and caution against overreliance on unverified
surrogate endpoints. As longevity medicine and preventive geriatrics advance, such
frameworks may support the development of personalized interventions to extend
healthspan, improve clinical risk stratification, and facilitate early detection of organ-
specific decline before the onset of overt disease.
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INTRODUCTION

Aging remains a fundamental process indicating the linear progression
of our physical world. At an organism level, aging can be conceptually
explained as the cumulative burden acquired by a gradual decline in
physiological function across organ systems (Rutledge et al., 2022). While
most people are familiar with chronological age, defined as the numerical
age from birth, this metric fails to encapsulate the wide variability in
how individuals age biologically. Contrastingly, biological age is a nuanced
reflection of cumulative molecular and functional deterioration within an
organism (Mogqri et al., 2023). This comprehensive metric provides a better
prognostication for functional capacity, morbidity, and mortality compared
to the conventional chronological age.

There is an avid interest in understanding and modulating biological
ageing. This fascination extends far beyond the scientific community. In
popular culture and media, the discordance between chronological and
biological aging is revered in high-performance athletes such as Cristiano
Ronaldo and Lebron James, who maintain elite physical metrics well into
their late 30s. Notably, tech entrepreneur Bryan Johnson had made significant
publicly declared efforts to achieve the biological profile of an 18-year-old
across multiple organs with his Blueprint project. This project has drawn
widespread attention for its granular monitoring of biological age using DNA
methylation clocks, imaging, and a battery of clinical biomarkers. These high-
profile cases fostered both public enthusiasm and skepticism. It is important
to note that while these individual case studies underscore the aspirational
goals of longevity science, they also illustrate the gaps in the standardization,
validation, and interpretation of aging biomarkers.

On the opposite end of the spectrum, there exist rare genetic disorders
such as progeria (Hutchinson-Gilford Progeria Syndrome), which offer a
stark reminder of what an accelerated biological aging phenotype looks
like (Bejaoui et al., 2022). Pediatric cases with progeria display early-
onset cardiovascular disease, growth failure, and shortened lifespan, which
illustrates the systemic consequence of accelerated biological aging (Bejaoui
et al., 2022). These cases underscore the profound biological underpinnings
of aging and highlight the urgency of understanding how aging manifests
differently across tissues and individuals.

In this review, we present a conceptual and evidence-based framework for
assessing biological age across major physiological systems; cardiovascular,
hepatic, renal, pulmonary, immune, musculoskeletal, neurocognitive,
endocrine, and integumentary domains. We critically appraise candidate
biomarkers based on their mechanistic validity, responsiveness to
intervention, feasibility, and prognostic value. We also explore how these
modular assessments can be synthesized with whole-body aging metrics
and functional performance indicators (e.g., gait speed, grip strength, sleep
architecture) to create a comprehensive biological age profile.

By bridging scientific evidence with practical considerations, this review
aims to identify candidate biomarkers that span all major organ systems
and utilize them to create an organ-specific aging model. This model will
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assess the current composite biological age and subsequently predict the
rate of aging. We also caution against the overuse of surrogate markers
in the absence of clinical outcome data, particularly in commercial or self-
experimentation contexts. As personalized medicine and preventive geriatrics
evolve, robust frameworks for biological age assessment will be essential for
risk stratification, early intervention, and extending healthspan.

FROM MOLECULES TO MOBILITY: INTERLINK BETWEEN mTOR,
AMPK, AND SIRTUINS WITH HUMAN PERFORMANCE AND
ERGONOMICS

The molecular mechanistic explanation for ageing is the concept of ex-
differentiation, wherein there is a loss in the fidelity of the epigenetic
signatures, which is inherently responsible for maintaining the specialized
differentiated state of a mature cell type. The dogma here is that cells
now become generalized instead of maintaining their carefully epigenetically
curated specialization state, and this alteration is heralded as the central
molecular event leading to ageing. From a human factors perspective,
such molecular drift is expressed at the system level as reduced cognitive
performance, slowed reaction times, and diminished physicality. All these
directly impact an individual’s ability to interact with their environment,
workplace performance, independence in daily living.

At a molecular level, longevity-related pathways are governed by mTOR
(mechanistic target of rapamycin), AMPK (AMP-activated protein kinase),
and the sirtuin family of NAD*-dependent enzymes. These 3 genes networks
work in consort to orchestrate the balance between growth, repair, and
stress resistance by regulating cellular energy expenditure and supporting the
epigenetic fidelity of cells (Sadria and Layton, 2021).

mTOR integrates nutrient and growth signals, a gene that gets activated
when it senses amino acids, and induces protein synthesis. A low activity
of mTOR is a trigger for the cell to induce survival mode and optimize
energy efficiency. mTOR hyperactivity promotes vascular fibrosis and
inflammation, resulting in increased arterial stiffness (Pulse Wave Velocity
(PWYV)). Additionally, aerobic functional capacity (VO2 max) decreases with
mTOR-mediated mitochondrial dysfunction. These changes manifest not
just as abstract molecular phenomena, but as measurable decrements in
our cardiovascular performance and fatigue resistance, which are critical
ergonomic determinants in both occupational and aging populations.

Contrastingly, AMPK activation supports metabolic efficiency during
fasting and increases insulin sensitivity and mitochondrial efficiency
(Salminen and Kaarniranta, 2012). Interestingly, AMPK activation by
lifestyle modifications (caloric restriction, exercise) and pharmacological
interventions (metformin) demonstrate the direct human-factor relevance in
modulating these pathways. People experience can improve their endurance,
attain stringent glycemic control, and develop stress tolerance. AMPK also
downregulates mTOR and upregulates other longevity-promoting genes.

Lastly, sirtuin family genes are the central regulators of longevity, activated
by fasting and exercise. Sirtuin gene products produce proteins that help
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reset the epigenetic machinery, which essentially reverse ex-differentiation
(Ji et al., 2022). Functionally, this translates to improved neurocognitive
performance, preserved musculoskeletal function, and greater resilience to
environmental stressors. All of these are human-centered outcomes that align
biological mechanisms with ergonomics and applied aging research.

METHODOLOGY

We conducted a comprehensive review (Figure 1) on Medline to identify
biomarkers of organ-specific ageing. The search query utilized a combination
of terms: “biomarkers” OR “marker” AND “aging”. The query was targeted
to studies from 2015 to 2025, English language, and human studies. A total
of 35 studies were included after screening for clinical relevance, normalized
data (median, 95% percentiles), and age-specific ranges in healthy cohorts.
Studies were also critically appraised based on their study design and clinical
utility for inclusion.

Identification of studies via database
Records identified: N Records removed before screening:
Medline (n = 850) No full article available (n = 130)
i Records excluded:

Irrelevant (n = 300)
Records screened: No original data (n=120)

(n=720) —| Not biomarker-focused (n=100)
No biomarker reference range (n=80)
Low evidence quality (n=65)
Non-English (n=20)

Studies included:
(n=35)

[ Included ][ Screening ][ Identification ]

Figure 1: Flowchart showing literature review process for evaluation of candidate
biomarkers for aging.

RESULTS

To construct a comprehensive model for holistic evaluation of biological
age, we identified 17 biomarkers across all major organ systems that
had established associations with ageing and a predominantly non-invasive
methodology for testing. Table 1 shows a summary of each biomarker,
including the level of evidence available based on the presence of a
longitudinal cohort study or meta-analysis for clinical validation.
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Table 1: Summary of organ system specific biomarkers of ageing: Evidence, biological
implication and age-matched metrics.

Biomarker Biological Example of Reference

[System] Implication Age-Related [Evidence Level]
Metrics

Pulse wave Velocity Measures arterial ~ Brachial PWV (Diaz et al., 2014;

(PWV) [CV]

VO2 Max [CV]

MRI based Brain
Volume [Neuro]

stiffness an
indicator for
vascular aging.
This reflects
cumulative
oxidative and
inflammatory
damage. Increased
risk of HTN, CVA,
MI. Higher
velocities indicate
less vessel elasticity.

Maximal rate at
which a person
consumes O
during a bout of
intense exercise. [t
declines 0.5-1%
per year after age
30. Predicts
functional capacity,
CV fitness, and
mortality risk.

T1-weighted
voxel-based
morphometry
indicating cortical
atrophy by
measuring GMV.
GMV is more
sensitive to aging
and correlate with
cognitive decline,
dementia risk, and
neurodegenerative

processes such as
AD.

95% CI (m/s)
10-29y: 4.25 - 5.85
40-49y: 6.15 - 6.4
>70y: 10.15 - 10.7

Reference Range
(mL/Kg/min)
20-29y: 5'[42-52],
Q[35-43]

40-49y: 5'[36-44],
?[29-36] >70y:
d'[25-31], ¢[20-25]

Reference Range
(cm?)

20-29y: 580 - 680
40-49y: 480 - 580
>70y: 450 - 550

Vieira-da-Silva
et al., 2025) [High]

(Hawkins and
Wiswell, 2003;
Kaminsky et al.,
2015; Mandsager
et al., 2018) [High]

(Bethlehem et al.,
2022;
Cumplido-Mayoral
et al., 2025; Fujita
et al., 2023) [High]

Continued
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Table 1: Continued

Biomarker Biological Example of Reference

[System] Implication Age-Related [Evidence Level]

Metrics

Neurofilament NfL is a structural ~ Plasma upper 95™  (Simrén et al.,

Light Chain (NfL) protein of the percentile (pg/mL) 2022;

[Neuro] neuronal 5-17y: 7 Sukhonpanich
cytoskeleton that ~ 18-50y: 10 et al., 2025) [High]
becomes detectable >70y: 35

Digit Symbol
Substitution Test
(DSST) [Neuro]

FEV1 [Resp]

¢GFR (CKD- EPI)
[Renal]

in blood when
neurons undergo
damage or
degeneration.
Blood-based NfL
measurement can
serves as a sensitive
aging biomarker in
healthy individuals.

DSST score is a
numerical value of
correct
symbol-digit
pairings completed
in 90 seconds from
validated Wechsler
Adult Intelligence
Scale. DSST score
declines with age
due to slower
processing speed
and cognitive
aging.

Measures lung
capacity decline
and is sensitive to
lung aging. FEV1
predicts COPD,
respiratory
infection risk,
mortality.

Assesses kidney
filtration decline;
Clinically utilized
for predicting
chronic kidney
disease,
hypertension, and
mortality.

Median (upper
95t percentile)
20-29y: 85 (100)
40-49y: 75 (90)
>70y: 45 (60)

Median (upper
95t percentile) L
20-29y: 3.8 (4.5)
40-49y: 3.3 (4.0)
>70y: 2.2 (2.9)

Median (upper
95t percentile)
mL/min/1.73m?
20-29y: 120 (135)
40-49y: 106 (122)
>70y: 82 (99)

(Erdodi et al.,
2017; Shaaban
et al., 2023)
[Moderate]

(Quanjer et al.,
2012) [High]

(Astley et al., 20235;
Waas et al., 2021)
[High]

Continued
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Table 1: Continued

Biomarker
[System]

Biological
Implication

Example of
Age-Related
Metrics

Reference
[Evidence Level]

Cystatin C [Renal]

Alanine
Amino-transferase
(ALT) [Hepatic]

Gamma-Glutamyl
Transferase (GGT)
[Hepatic]

FibroScan
[Hepatic]

Assesses kidney
filtration decline;
clinically utilized
for predicting
chronic kidney
disease, CV risk,
and mortality.
Cystatin C is less
affected by muscle
mass than
creatinine.

AlTisa
hepatocyte injury
marker. Increases
with inflammation
and decreases with
advanced age,
correlating with
metabolic
disorders, liver
disease, and
mortality

GGT is an enzyme
with oxidative
stress and biliary
function marker.
GGT increases
with age due to
metabolic changes,
correlating with
hepatocyte fatty
deposition,
diabetes, and CV
mortality

This transient
elastography
assesses hepatic
fibrosis via
parenchyma
stiffness. Stiffness
correlated with
age-related subtle
collagen buildup,
degree of steatosis,
and mortality.

Median (upper
95t percentile)
mg/L

20-29y: 0.7 (0.9)
40-49y: 0.8 (1.0)
>70y: 1.2 (1.7)

Median (upper
95t percentile)
U/L

20-29y: 20 (40)
40-49y: 24 (50)
>70y: 18 (35)

Median (upper
95t percentile)
U/L

20-29y: 18 (40)
40-49y: 25 (60)
>70y: 40 (90)

Median (upper
95th percentile)
KPa

20-29y: 4.2 (S5.5)
40-49y: 4.6 (6.0)
>70y: 5.2 (6.8)

(Groesbeck et al.,
2008) [High]

(Le Couteur et al.,
2010; Najmy et al.,
2019) [Moderate]

(Long et al., 2014;
Praetorius Bjork
and Johansson,
2018) [Moderate]

(Colombo et al.,
2011; Selman and
Pardo, 2021;
Sharma et al.,
2023) [Moderate]

Continued
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Table 1: Continued

Biomarker Biological Example of Reference

[System] Implication Age-Related [Evidence Level]
Metrics

Grip strength
[MSK]

DEXA lean mass
[MSK]

hsCRP [Immune]

T-Cell Senescence
Markers [Immune]

IGF-1 [Endocrine]

This reflects
sarcopenia and
predicts ageing,
frailty, falls, and
mortality.

This measures
sarcopenia and
predicts physical
decline.

Serum marker of
low-grade systemic
inflammation;
predicts frailty, and
mortality.

%CD8+ T cells
expressing CDS7,
via flow cytometry.
Ageing associate
rise with due to
cumulative antigen
exposure and
attaining
replicative
senescence.

IGF-11s
somatotropic
hormone. It
declines with
ageing due to
reduction in GH
secretion. Serum
IGF-1 correlates
with frailty, muscle
loss, cognitive
decline, and
mortality.

Median (upper
95th percentile) Kg
20-29y: 36 (45)
40-49y: 35 (43)
>70y: 24 (32)

Median (upper
95th percentile) Kg
20-29y: 36 (45)
40-49y: 35 (43)
>70y: 24 (32)

Median (upper
95t percentile)
mg/L

20-29y: 0.6 (2.0)
40-49y: 0.8 (3.0)
>70y: 1.5 (4.5)

Median (upper
95th percentile) %
20-29y: 10 (20)
40-49y: 15 (30)
>70y: 35 (55)

Median (upper
95t percentile)
ng/mL

20-29y: 250 (350)
40-49y: 170 (260)
>70y: 100 (150)

(Roman-Liu et al.,
2024; Wang et al.,
2018) [High]

(Kirk et al., 2021)
[Highl

(Gabin et al., 2018;
Wang et al., 2016)
[Moderate]

(Chang et al.,
2024; Terekhova
et al., 2023)
[Moderate]

(Conover and
Oxvig, 2025;
Stojanovic et al.,

2021) [High]

Continued
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Table 1: Continued

Biomarker Biological Example of Reference

[System] Implication Age-Related [Evidence Level]
Metrics

Dermal Elasticity =~ Cutometer is a Median (upper (Everett and

[Derm] non-invasive 95th percentile) Sommers, 2013;

suction device that  20-29y: 0.67 (0.78) Ryu et al., 2008)
measures the skin ~ 40-49y: 0.61 (0.74) [Moderate]
deformation to >70y: 0.52 (0.65)

evaluate the degree

of collagen

degradation.

Cardiovascular (CV), Hypertension (HTN), Cerebrovascular attack
(CVA), Myocardial Infarction (MI), Confidence Interval (CI), Volume of
Oxygen (VO,), Magnetic Resonance Imaging (MRI), Alzheimer’s Disease
(AD), total brain volume (TBV), gray matter volume (GMYV), Forced
Expiratory Volume in 1 Second (FEV1), Respiratory (Resp), chronic
obstructive pulmonary disease (COPD), musculoskeletal (MSK), dual-energy
X-ray absorptiometry (DEXA), high sensitivity C reactive protein (hsCRP),
Insulin-Like Growth Factor-1 (IGF-1)

It is important to note that these biomarkers in Table 1 can have numerous
pathophysiological conditions and preanalytical variables such as metabolic
disorders, infections, medications, and assay variability (sample collection or
equipment calibration). One notable example is that an elevated hsCRP assay
could indicate acute inflammation rather than underlying inflammaging.
Similarly, a reduced FEV1 could also indicate undiagnosed COPD instead
of age-related decline. To assess biological aging accurately with these
biomarkers, the patients must be disease-free, medication-naive, and devoid
of confounding factors, which must be ruled out via comprehensive clinical
evaluation. It is recommended that there is oversight by corresponding
subspecialty physician (e.g. Neurologist for NfL or hematologist for T-
Cell Senescence Markers) or a clinician well-versed in aging biomarker
assessment that can exclude the corresponding pathophysiological causes and
contextualize the results.

SYSTEMIC BIOLOGICAL AGING ASSESSMENT

There are many different blood-based methylation arrays, such as Horvath,
GrimAge, and DunedinPACE. The Horvath assay is a first-generation model
that evaluates the methylation status at 353 CpG sites across multiple tissues
to estimate the biological age (r = 0.85 with chronological age) by reflecting
on the cumulative epigenetic dysregulation (Lu et al., 2023). The GrimAge
assay is a second-generation clock that evaluates the methylation status at
1030 CpG sites and incorporates surrogate plasma protein (PAI-1, TIMP-1)
as well as extrinsic factors such as smoking status to provide an estimated
mortality risk (r= 0.9 with chronological age) (Lu et al., 2019). Contrastingly,
the DunedinPACE assay evaluates the methylation status at 173 CpG sites
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along with 19 additional physiological biomarkers, which quantifies the rate
of aging (e.g. 0.5 is aging at half the rate of a normal person) (Belsky et al.,
2022).

DISCUSSION

In this paper, we present a framework that estimates overall biological
aging by integrating the age from validated organ system-specific biomarkers
and utilizing a modulating factor based on the systemic epigenetic metrics
to provide a multidimensional assessment for biological age. The selected
candidates from our Table 1 span across multiple organ systems such as
cardiovascular (Pulse Wave Velocity, VO, Max), neurological (MRI-based
brain volume, NfL, DSST), pulmonary (FEV), renal (eGFR or Cystatin C),
Hepatic (ALT, GGT, FibroScan), MSK (Grip strength, DEXA-derived lean
mass), immune (hs-CRP, T-cell senescence markers), endocrine (IGF-1), and
integumentary (dermal elasticity) systems. These non-invasive biomarkers
were included in our model as they predominantly endorsed a strong level
of evidence for predicting frailty, morbidity, and mortality in our literature
review.

A composite biological Age (CBA) metric is derived by averaging the
midpoint values obtained from the age-matched estimates from each
biomarker. This CBA reflects the current biological age of the patient,
independent of their chronological age. Additionally, the cumulative rate of
biological aging across the organs over a shorter timeframe (approximately
2 years) can then be supplemented with the DunedinPACE value as a
modulating factor to yield an integrated age projection. This modulation
adjusts for disproportionate aging across organ systems while providing
a prediction that highlights the discordance between chronological and
biological age. Figure 2 summarizes how the biomarkers are utilized to
compute the CBA and how the DunedinPACE is used to predict the biological
age.

One current limitation in our model is that we assume that each of
the biomarkers has an equal contribution towards the CBA. There is a
need for an evidence-based weightage model that appropriately incorporates
the weight of each biomarker into the CBA formula. Further longitudinal
studies are required to categorize which biomarkers are considered fast-aging
(hepatic (ALT, GGT, FibroScan)) versus slow-aging (Lungs (FEV{)) organs
(Le Couteur et al, 2010; Najmy et al., 24; Quanjer et al., 2012; Sharma
et al., 2023). This would allow refinement of our unweighted model into an
outcome-driven composite model. Another limitation in our current model
is the partial overlap between biomarkers (GGT, FEV1, hsCRP, and grip
strength) included in our proposed CBA and those already incorporated
in the proprietary DunedinPACE epigenetic clock. This redundancy could
introduce multicollinearity and potentially introduce more bias towards the
contribution from these biomarkers. Future iterations of this model can
utilize alternative epigenetic assays such as Horvath or GrimAge, which have
less biomarker overlap.
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Organ-Specific Model

! ! ! }

! } I

L L

e PWV o GMV e FEV1 e eGFR e ALT e Grip e hsCcRP e IGF-1 e Dermal

* VO, Max e NfL e CystatinC e GGT strength e CD8*/CD57* Elasticity
e DSST e FibroScan e DEXAlean %
mass
n A + Ai = mid-point of age-equivalent
i=1 value for biomarker 7

Composite Biological Age (CBA) =

* n=number of biomarkers
measured.

!

Projected Biological Age (PBA) = CBA + (T = DunedinPACE) ‘ = T=Timepoint in the future |

Figure 2: Summary of organ-specific biological aging model. The mid-point value
from each of the biomarkers is averaged to obtain the composite biological age.
Abbreviations: Pulse wave Velocity (PWV), Maximum Volume of Oxygen (VO2
Max), Gray Matter Volume (GMV), Neurofilament Light Chain (NfL), Digit Symbol
Substitution Test (DSST), Forced Expiratory Volume in 1 Second (FEV1), estimated
Glomerular filteration Rate (eGFR), Alanine Aminotransferase (ALT), Gamma-Glutamyl
Transferase (GGT), dual-energy X-ray absorptiometry (DEXA), high sensitivity
C-reactive protein (hsCRP), Insulin-Like Growth Factor-1 (IGF-1).

Compared to the other blood-based aging calculators, such as PhenoAge
or inflammaging indices, our organ-based model offers a higher resolution at
the tissue level. PhenoAge utilizes nine biomarkers (such as glucose, albumin,
hsCRP, and lymphocyte %) from routine blood tests to estimate the biological
age and a mortality prediction (Cribb et al., 2022). This makes PhenoAge
more economical than our model, but it does dilute the assessment by
not covering organ-level insights from specialized tests like (MRI cortical
volume, and FibroScan). Contrastingly, the inflammaging indices (such as
interleukin-6 (IL-6), and Tumour necrosis factor alpha (TNF-a)) quantify
the longstanding low-grade inflammation and correlate it with the frailty
and multi-organ decline prediction (Cribb et al., 2022).

Similarly, functional aging metrics such as gait speed (4-meter walk
test), reaction time (choice reaction tasks), and sleep architecture (Rapid
eye movement (REM) fragmentation) capture real-world functional decline
beyond molecular signals (Deatsch et al., 2025). Our organ-based model
offers an alternative to these functional markers, such as grip strength instead
of the gait speed test, DSST instead of the reaction time test, and IGF-1, which
is a more accessible blood test instead of the polysomnography.

CONCLUSION

Despite advances in systemic biological age estimation through epigenetic
clocks like Horvath, GrimAge, and DunedinPACE, there is a critical gap in the



Organ-Specific Biomarkers of Aging: An Innovative Framework 1573

literature regarding modular organ-specific assessment for aging. Given that
different organs may age at different rates and have unique vulnerabilities,
our integrated approach that combines both organ-level aging biomarkers
using CBA score and future rate of aging projection with DunedinPACE.
This model bridges molecular and epigenetic insights and offers a practical
and comprehensive review for personalized aging interventions as well as
biomarkers for monitoring the impact of the intervention. Future studies can
validate its specificity against these alternatives.
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