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ABSTRACT

Despite the considerable potential inherent in the integration of Al into healthcare,
its practical application remains limited. In a preceding study (Theilmann et al.,
2025), semi-structured expert interviews were conducted to identify key factors for
successfully integrating Al into healthcare. Factors identified include ease of use,
alignment with clinical workflows, the incorporation of domain-specific knowledge
and the involvement of stakeholders through co-design methods. This paper explores
these factors in practice by implementing a low-fidelity prototype to support
ophthalmologists in clinical decision-making based on optical coherence tomography
(OCT) and fundus scans was implemented. It supports multimodal interaction
modalities, editable Al-generated suggestions, and interactive visual overlays. To
evaluate the user interface and interaction design, structured usability testing was
carried out with practising ophthalmologists at a German ophthalmology clinic.
The study employed a combination of quantitative and qualitative methodologies,
encompassing think-aloud protocols, the System Usability Scale (SUS), and an
A/B testing setup. The findings suggest that interaction design tailored to the
specific needs of ophthalmology, such as visual overlays and multimodal interaction
types, improves the efficiency of Human-Al collaboration. A strong preference for
interpretable and editable Al outputs was identified, as these outputs allow for
greater control over final decisions and increased transparency. The study outlines
a human-centred design process and demonstrates how structured feedback loops,
domain-specific adaptations and user-centred design can facilitate a more effective
adoption of Al in healthcare. These insights could inform the development of future
interactive Al systems that support, rather than replace, medical expertise.

Keywords: Human-in-the-loop, HITL, Human-Al interaction, Human-computer interaction,
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INTRODUCTION

Healthcare systems worldwide are facing growing pressure from shortages
of skilled professionals. These challenges have spurred interest in digital
innovations that can increase efficiency while maintaining quality of care.
Among these innovations, Al has emerged as a promising technology with
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applications in medical imaging, predictive analytics, and clinical decision
support (Elhaddad et al., 2024). By processing large volumes of multimodal
data, Al systems have the potential to support clinicians in making faster
and more reliable decisions, while reducing documentation burdens and
optimizing resource allocation. In diagnostic fields, for instance, Al has been
shown to identify subtle patterns in medical images that may be overlooked
in routine practice (McKinney et al., 2020).

To ensure that these technologies are safe, trustworthy, and clinically
relevant, recent research has emphasized the importance of Human-in-the-
Loop (HITL) approaches (Griffen and Owens, 2024; Yuan et al., 2024).
HITL refers to the integration of human expertise into the development
and use of Al systems, enabling clinicians to supervise, validate, and refine
algorithmic outputs (Li and Ercisli, 2023). Rather than replacing medical
professionals, HITL positions Al as a collaborative tool that augments
clinical judgment while allowing for oversight and accountability. Such
interaction is particularly crucial in domains where diagnostic accuracy and
contextual knowledge are essential (Schiitz et al., 2024).

Despite promising research results, the clinical adoption of Al remains
limited and fails to integrate into everyday clinical workflows (Hassan,
Kushniruk, and Borycki, 2024). Barriers include lack of transparency,
technical integration hurdles, and organizational resistance, which create
uncertainty about trust and accountability. These obstacles highlight a
persistent mismatch between AI’s technical capabilities and its practical
application, underscoring the need to identify success factors for meaningful
adoption. Recent frameworks and reviews emphasize usability, workflow
alignment, governance, and trust as critical adoption factors (Ardito et al.,
2025; Lekadir et al., 2025; Nair et al., 2025), but often lack empirical
validation or focus on interaction design.

To address this gap, the present study develops and evaluates a prototype
decision support system in ophthalmology, tailored to the analysis of optical
coherence tomography and fundus scans. The central research question
guiding this investigation is: How can Human-in-the-Loop approaches
shape the interaction between ophthalmologists and Al systems to improve
usability, foster trust, and support workflow integration? Usability testing
with practicing ophthalmologists of varying experience levels was conducted
to evaluate the effectiveness of these design choices using a combination
of think-aloud protocols, the System Usability Scale (SUS), and A/B testing
of interaction modalities. The study examines how these design choices
influence usability, trust, and clinician acceptance, thereby generating
insights for the effective integration of Al in healthcare.

The remainder of this paper first outlines the methodology and prototype
design, including the co-design process and evaluation setup. It then
presents the results, combining usability metrics with qualitative insights,
and discusses how clinician feedback informed system refinements in
light of broader success factors for Al adoption. The paper concludes
with implications for human-AI collaboration, as well as limitations and
directions for future research.
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METHODOLOGY

Co-Design plays a key role in developing meaningful healthcare applications
by involving users throughout conception, prototyping, and evaluation
(Kilfoy et al., 2024). In the conception phase, expert interviews were
conducted to identify factors supporting effective Al in healthcare. This study
builds directly on preceding work by Theilmann et al. (2025), who identified
ease of use, workflow integration, domain-specific adaptation, and co-design
with stakeholders as critical success factors for Al adoption in healthcare.
They emphasized the importance of time efficiency, explainability, and HITL
mechanisms as prerequisites for trust and sustained clinical use. These
findings provided the foundation for the presented prototype, informing both
the choice of features and the evaluation focusing on usability, workflow
integration, and clinician acceptance.

Prototype

The low-fidelity prototype was developed in accordance with core
principles of human-centred clinical decision support, emphasizing alignment
with existing workflows, clear visibility of system state, and strong
clinician control and oversight. These design choices were guided by
established frameworks in human-centred design (Cooper et al., 2014) and
recommendations for decision support systems in healthcare (Bates et al.,
2003).

Persona design was employed to ground the low-fidelity prototype in
realistic clinical contexts, ensuring that interface features reflected the goals,
frustrations, and workflows of different types of users, including senior
specialists, residents, and clinical assistants. By incorporating personas early
in the design process, the low-fidelity prototype’s functionality was aligned
with actual user needs from the outset, thereby supporting ecological validity
and user-centred evaluation (Adlin and Pruitt, 2010).

A task-centred approach was applied to model the diagnostic workflow in
ophthalmology, with particular attention to image-based decision-making.
The workflow was decomposed into sequential stages, and each step was
analysed in terms of the clinician’s goal, the information accessed, and the
potential role of Al support. This task breakdown provided a structured
foundation for designing the low-fidelity prototype interface, simulating Al
suggestions, and defining interaction points for subsequent evaluation. By
grounding the design in actual diagnostic sequences, the system ensures that
Al interventions occur at clinically relevant moments, thereby supporting
rather than replacing professional judgment (Zhang and Walji, 2011).
The resulting workflow was operationalised into five core stages, each
representing a key interaction point in the application (see Table 1).
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Table 1: Task breakdown of the diagnostic workflow, outlining core stages and
corresponding low-fidelity prototype functionalities.

Task Stage Core Functionalities
Patient Search and « Search bar and filters for patient identification.
Data Entry « Results are populated in a list view.

« Patient details can be edited and updated using forms.

Scan Upload/History « Scan upload using form.
Review o Preview of historical patient scan data
« Access to previous notes.

Scan Interpretation « Image viewer with zoom and contrast adjustment.
and Review « Toggleable Al overlays for areas of interest in scan.
AT Suggestion o Al suggested diagnostic with confidence score.
Validation/ o Al generated text suggestions for patient notes. User
Adjustment can accept or reject them.

Report Generation « Compose and review final report.

and Submission « Al text suggestion for final notes.

o Placeholder to generate PDF and integrate into
electronic health records.

To address the complexity of ophthalmological diagnostics, the low-
fidelity prototype was designed to support multimodal interaction, enabling
clinicians to review different imaging modalities such as OCT and fundus
photography within a unified environment (see Figure 1). A central
feature of the system is the integration of Al-generated suggestions with
both textual feedback and visual overlays. Clinicians can accept or
reject textual suggestions, with accepted content automatically integrated
into the diagnostic notes. Overlays highlight areas of potential clinical
relevance on the scan, facilitating rapid assessment and verification
of algorithmic outputs. Diagnostic options are presented as selectable
buttons accompanied by confidence scores, supporting efficient review
and comparison. This combination of structured textual suggestions and
visual augmentation fosters collaborative decision-making between human
expertise and computational analysis, while maintaining a HITL paradigm
in which the final responsibility rests with the clinician.

Evaluation

The evaluation was conducted using semi-structured interviews. There
were a total of five participants who were ophthalmologists with varying
levels of experience, ranging from residents in training to senior specialists
(see Table 2). This diversity was intentional, as it allowed us to capture
perspectives across different expertise levels and sufficiently identify majority
of usability issues in formative testing (Nielsen, 2000).
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Figure 1: Low-fidelity prototype interface showing a patient scan with Al-generated
overlays, editable diagnostic notes, and diagnostic options with confidence scores.

Table 2: Demographic and professional characteristics of the interview participants,
including age, role, years of clinical experience, and familiarity with Al tools.

Id Age Role Experience Al Use & Familiarity

PO1 31  Assistant 1yr Moderate familiarity, Uses
Doctor fluid-monitor; interested in voice-based

Al

P02 50  Senior 22 yrs Uses Al regularly; wants daily
Consultant integration

P03 32 Assistant 4.5 yrs Moderate experience, open to Al
Doctor integration

P04 36  Specialist 9 yrs Familiar with AL uses it often, supports
Doctor integration

P05 29  Assistant 2 yrs Very familiar with Al, occasional use
Doctor (e.g. conversational agents)

Each interview lasted approximately 45 minutes and followed a structured
protocol designed to capture both task performance and user perceptions.
Interviews were conducted in German to ensure that participants could
express themselves naturally. After an initial introduction covering greeting,
consent, and a short explanation of the system, participants engaged in
interactive tasks. During this phase, they were asked to think aloud while
completing a predefined task list (patient search, reviewing OCT and fundus
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scans with Al overlays, adjusting parameters like fluid percentage or lesion
size, interacting with Al-generated report content). Immediately after this,
participants completed the SUS questionnaire to capture their impressions
without being influenced by subsequent discussion. The session continued
with an A/B component comparison, in which participants tested alternative
interface versions (e.g., parameter input style, suggestion formatting) and
discussed their preferences. This was followed by a paper-based annotation
exercise, where participants marked printed screenshots by highlighting
disliked elements, circling unclear components, and suggesting alternatives.
Each session concluded with optional follow-up questions and free-text
feedback.

The evaluation produced a set of deliverables including SUS scores, task
performance observations, component preferences, annotated screenshots,
and consolidated recommendations for design improvements. Together, these
methods provided both quantitative usability metrics and qualitative insights,
forming the basis for the results presented in the next section.

FINDINGS

Quantitative Results

Task durations ranged from 5 to 17 minutes, reflecting different levels of
thoroughness, familiarity with such interfaces, and individual interaction
depth. The SUS evaluation yielded an overall average score of 82.5,
corresponding to ’Excellent’ usability according to Bangor et al. (2008)
grading interpretation. Individual participant scores ranged from 72.5 (PO1)
to 90.0 (P03). The ratings of three of the participants (P02, P03, POS)
indicate excellent usability, while the other two (P01, PO4) indicate good
usability. Despite the small number of participants, the consistency of
high usability ratings indicate that the low-fidelity prototype meets widely
accepted usability benchmarks. Notably, there were only minimal differences
between residents and senior ophthalmologists, suggesting that the interface
design was equally accessible across levels of clinical experience.

The A/B testing shows clear participant preferences for button-based
diagnosis selection, gallery-style image viewing, separate placement of
Al suggestions, and factual Al. The parameter input style was the only
component to yield a more balanced split (60%), while the others showed
strong tendencies (>=80%).

Table 3: Results of the A/B testing across five design elements with favoured variant
highlighted in bold.

Design Variant  P01-P05 A B

Parameter Input B, A, A, B,B  Free text entry 2 Numeric up down 3
Style (40%) (60%)

Diagnosis A,A,A,B,A Buttons 4 (80%) Dropdown List 1 (20%)

Selection Ul

Continued
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Table 3: Continued

Design Variant P01-PO5 A B

Image Viewing  B,B,B,B,B  Current scan as Gallery at bottom to
Layout main view 0 (0%) choose scan 5 (100%)
Al Suggestion B, A, A, A, A Separate below Inline integration 1
Placement the notes 4 (80%) (20%)

Al Suggestion A, A, A,A; A Factual wording 5  Question and suggestive
Wording (100%) wording 0 (0%)

Qualitative Results

The qualitative evaluation, conducted through think-aloud protocols, semi-
structured interviews, and annotation tasks, revealed recurring themes
that shaped clinicians’ perceptions of the low-fidelity prototype. Coding
of transcripts and observation notes identified usability challenges and
opportunities for refinement, which were prioritized by severity, frequency,
and implementation effort.

Participants stressed that Al suggestions should be additive rather
than repetitive, parameter inputs needed contextual visual guidance, and
overlays required clearer interpretation. Feedback also emphasized workflow
alignment, with requests for flexible data filtering, persistent diagnostic
history, and consistent left-right eye separation. Importantly, preferences
varied by role and level of experience: while residents valued overlays
for learning and engaged more with suggestions, senior specialists sought
efficiency, minimal redundancy, and were less likely to interact with Al
feedback unless it added clear value. Finally, participants suggested optional
rejection explanations as a way to strengthen accountability and improve
system learning.

Further refinements such as higher visual contrast, bullet-point report
formatting, and thumbnail previews were also noted but ranked as lower
priority. Overall, the analysis highlighted the need for Al features that balance
transparency, editable controls, and workflow efficiency. The key themes and
representative quotes are summarized in Table 5.

Table 4: Qualitative feedback themes with representative participant quotes,
highlighting clinician perspectives.

Theme Representative Quotes
Improve parameter “Where exactly is this fluid being measured? There
input clarity should be a marker.” (P03)
“Just numbers without context are hard to verify. A visual
aid would belp.” (P04)
Suppress redundant “If the notes already say that VHGEF therapy is needed, 1
AT suggestions don’t see the point of the Al repeating it.” (P01)

“It says the same thing twice — I would prefer if it only
suggested what I missed.” (P03)

Hide non-relevant “I don’t need all these fields — maybe let me hide what 1
patient data don’t use.” (P03)

Continued
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Table 4: Continued

Theme Representative Quotes
Show diagnostic “I wish the previous findings were always visible — it’s
history without annoying to click back and forth.” (P04)
toggling
Clarify visual marker  “What exactly is the blue box marking? Is it always
for pathology accurate?” (P0O1)
“A label or legend would make the overlay more useful.”
(P03)
Support rejection “Sometimes I disagree, but I'd like to say why — maybe
explanation in one line.” (POS)

Resulting System Architecture and Implementation

The architecture was derived directly from the results of the usability study.
Using a prioritisation framework that considered severity, frequency and
implementation effort, improvements with the greatest impact on clinical
workflow were implemented first. Those with less benefit were reserved for
later iterations.

The system follows clear HITL principles. Clinicians remain in control
of the diagnostic process: Al suggestions are provided only when relevant,
and each suggestion can be accepted or rejected. These interactions are
logged, creating a feedback loop that allows future retraining of models. The
separation of clinical data, Al outputs, and clinician overrides in the database
schema makes this process transparent and traceable. In this way, the system
does not replace medical expertise but embeds oversight and accountability
into its technical structure.

Nodejs API layer Microservices
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Figure 2: System architecture of the implemented prototype, illustrating the interaction
between front end, back end, database, and Al components within the clinical
workflow.
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Figure 2 illustrates the technical implementation. The front end enables the
visualization of scans, patient data, and feedback components. The database
and microservices are connected via the back end. The microservices provide
modular diagnostic models for image and text data that can be expanded
without interfering with the interface or data structures. The MongoDB
database stores patient data, scans, model predictions, and feedback,
supporting data flows such as model retraining based on medical feedback.
Its modular client-server structure complies with current best practices. It
enables new models to be integrated, supports various imaging procedures
and ensures interoperability with electronic health records. The design
enables the rapid development of prototypes and provides a foundation
for enhancements such as live diagnostic models, multi-user functions and
adaptive interfaces.

CONCLUSION

This study set out to investigate how HITL principles can be embedded
into the design of clinical decision support systems for ophthalmology.
Building on prior findings that emphasize the need for usability, workflow
alignment, and explainability as key success factors in healthcare Al adoption
(Nair et al., 2025; Theilmann et al., 2025), the implemented prototype
combined multimodal imaging, editable AI suggestions, and clinician-
controlled feedback loops to support decision-making without replacing
clinical expertise.

Both quantitative and qualitative findings highlighted usability as a
central success factor: SUS scores averaged 82.5, indicating excellent
perceived usability (Bangor and and Miller, 2008), while participant feedback
emphasized the need for transparency, editable Al outputs, and workflow
integration echoing the findings of Theilmann et al. (2025). Interpreted in
light of established success factors for Al adoption, these results reinforce
the importance of designing systems that complement rather than duplicate
clinician expertise. Previous studies have shown that transparency and
controllability are crucial for establishing trust in clinical Al systems (Lekadir
et al., 2025; Yuan et al., 2024). Our findings corroborate this, demonstrating
that features such as toggleable overlays, editable suggestions and filterable
data enabled participants to retain oversight while leveraging Al assistance.
These mechanisms illustrate that HITL is not only a design principle but
also a practical strategy for aligning automation with clinical accountability.
Griffen and Owens (2024) share this perspective, advocating for the
operationalization of HITL as a governance mechanism rather than treating
it as a symbolic safeguard.

There are two key implications for human-Al collaboration in clinical
workflows. Firstly, Al systems should be designed to adapt to differences
in clinical expertise. For example, residents may benefit from richer
overlays and guided suggestions, whereas senior specialists prioritise
streamlined efficiency and minimal redundancy. Secondly, collaboration is
strengthened when the system facilitates a feedback loop, enabling clinicians
to contextualise or reject Al outputs. These mechanisms improve usability in
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the short term and provide the foundation for long-term model refinement
and sustainable trust.

Despite these promising findings, the study has limitations. The
prototype was a low-fidelity system with simulated Al outputs rather
than integrated diagnostic models. While this approach allowed controlled
evaluation of interaction design, it limits the generalizability of performance-
related outcomes. Furthermore, the evaluation was conducted with a
small sample of five ophthalmologists, which constrains the statistical
representativeness of the results. Nevertheless, following Nielsen’s (2000)
heuristic, a sample of five participants is often sufficient to uncover major
usability issues, and the diversity of participants here provided valuable
insights across different levels of expertise.

In conclusion, this research demonstrates how HITL principles can
be systematically operationalized in a prototype decision support system,
yielding high usability scores and generating design insights relevant to
clinical practice. Future work should extend these findings by integrating
real diagnostic algorithms, testing scalability in multi-user settings, and
evaluating interoperability with electronic health records. More broadly,
adaptive interface features that align with clinician preferences hold promise
for tailoring Al systems to heterogeneous user groups. By combining technical
modularity with clinician-driven refinements, HITL systems can advance
from experimental prototypes to sustainable tools that support collaboration,
accountability, and trust in medical decision-making.
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