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ABSTRACT

Epilepsy, a chronic brain disease, impacts approximately 0.8%1.0% of the world
population, with approximately one million individuals affected in Japan alone. While
breakthroughs in machine learning and deep learning have improved the accuracy of
epilepsy detection in recent years, their extensive computational costs limit real-time
processing. To address this limitation, we investigated the feasibility of applying the
Active Threshold (AT) method, a technique originally devised for real-time voluntary
eye movement detection via electrooculography for the detection of epileptic seizures.
The AT method’s core principle involves computing the root mean square (RMS) value
from a bio-signal and scaling it by an arbitrary parameter α to determine the threshold.
This method has the advantages of real-time processing and easy calibration. In
this study, we applied the AT method to electroencephalogram (EEG) data, including
epileptic seizures, from the Boston Children’s Hospital dataset to evaluate whether
an appropriate threshold could be derived. Our analysis specifically focused on the
impact of changes in the α value on the accuracy of epilepsy detection. We selected a 7-
hour segment of preprocessed data from subject CHB-01, which included documented
seizure events. The α value was varied from 7 to 10, while the RMS calculation time
was fixed at 30 seconds. For evaluation, a detection was deemed a true positive if it fell
within the recorded epileptic seizure duration plus the 30-second RMS window, while
all other detections outside this range were considered false positives. Our results
demonstrate that the AT method successfully identified epileptic seizures across
all tested α parameters. However, certain seizure events within the 7-hour dataset
remained undetected using any of the parameter values. These undetected seizures
exhibited gradual EEG amplitude changes without significant potential amplification
compared to interictal periods, making them difficult to detect using the AT method’s
approach. Furthermore, noise-induced artifacts were erroneously classified as seizure
events, leading to a notable rate of false positive detections. Consequently, future
research must integrate advanced seizure classification algorithms to distinguish
genuine epileptic activity from noise artifacts in the detected EEG signals.
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INTRODUCTION

The application of bio-signals, including electroencephalogram (EEG),
in medical care is advancing. These signals are ideal for monitoring
physiological conditions, and with the recent widespread adoption of
wearable technology, their utility in personal health management is growing.
Beyond assessing concentration and cognitive states, EEG is now a key
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diagnostic tool for disorders such as epilepsy and dementia. Epilepsy, as
defined by the World Health Organization, is a chronic brain disorder
marked by recurrent seizures resulting from sudden, intense electrical
excitation of brain nerve cells (neurons) (UCB JAPAN, 2025). The condition
affects approximately 0.8%1.0% of the population, with an estimated
1 million patients in Japan (Ministry of Health, Labour and Welfare,
Japan, 2025). EEG is one of the most important diagnostic methods for
epilepsy, with the detection of epileptic discharges (e.g., spikes, sharp
waves, and spike complexes) in interictal EEGs providing diagnostic clues.
In hospital environments, continuous monitoring of all patients is not
feasible. Consequently, effective early detection systems are critical for
optimizing medical personnel allocation and enhancing patient safety. While
recent breakthroughs in machine and deep learning have boosted detection
accuracy, their high computational costs limit real-time processing (Ein Shoka
et al., 2023). Furthermore, although training customized machine learning
models can enhance accuracy, it requires specialized knowledge and frequent
adjustments, which contributes to poor usability. A survey by the Japan
Rehabilitation Engineering Society illustrates this problem, revealing that
approximately 42% of patients required device replacement due to changes
in residual function. The survey found an average replacement frequency of
1.6 times, with a maximum of 7 times for some individuals. This report
also highlights the need for regular interface adjustments or even interface
replacement (Rehabilitation Engineering Society of Japan, 2009). To address
these limitations, we propose the dynamic threshold (Active Threshold
[AT]) method, which was originally developed for real-time detection of
electrooculography (EOG) signals (Tamaki and Tanaka, 2017; Tamaki et al.,
2019). In the current study, we applied the AT method to recorded epileptic
seizure data to assess its potential for epilepsy detection and to determine
whether a reliable threshold could be established.

METHODOLOGY

We proposed the AT method, which dynamically calculates the threshold
using the root mean square (RMS), an effective metric derived from the EOG
signal. RMS is computed by squaring each value and then taking the square
root of the average of the squared values. It can measure the strength of the
EOG signal per unit time. Therefore, we think that this characteristic makes
RMS ideal for deriving a threshold that is applicable to the strength of the
EOGbetween individuals. The ATmethod derives its threshold in a three-step
process. First, the RMS, which represents the effective metric of the signal,
is computed from the obtained EOG data, as shown in equation (1). Here, t
denotes the current position,N is the total number of data, and l is defined as
N minus the movement widthw. RMS indicates the intensity per unit time of
alternating current signals. The AT method then derives the threshold value
(AT) by multiplying the calculated RMS by a constant parameter a, as shown
in equation (2). The threshold is thus determined using equation (2). The AT
method determines the presence of voluntary action if the absolute value of
the EOG exceeds this threshold value in equation (3). The overall process
and a detailed flowchart of the AT method are illustrated in Figure 1.
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Figure 1: AT method flowchart.

CHB-MIT SCALP EEG DATABASE

The CHB-MIT Scalp EEG Database, a collaborative effort between Boston
Children’s Hospital and the Massachusetts Institute of Technology, has
become a standard benchmark for epileptic seizure detection research
(Guttag, 2010). This comprehensive dataset consists of long-term scalp EEG
recordings from 22 pediatric patients (1.5-22 years old) with intractable
epilepsy. In total, the dataset contains 664 EDF files, of which 129 files
contain recordings of 198 epileptic seizures. The data were sampled at
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256 Hz, with electrode placement based on the International 1020 system.
Each file contains approximately 1–4 hours of continuous recording. Given
its broad adoption as an international standard, the CHB-MIT database
serves as a key benchmark for the development and evaluation of automated
epileptic seizure detection algorithms, particularly those based on machine
learning and deep learning.

SIMULATION PROCEDURE

For this study, we utilized a 7-hour segment of preprocessed data from
subject CHB-01, which contained periods with epileptic symptoms. The
following preprocessing steps were applied (Table 1). First, a 1–100 Hz
bandpass filter was applied. Next, a notch filter was applied to eliminate
60 Hz power line noise. Finally, independent component analysis (ICA)
was performed to remove components identified as electrooculogram (EOG)
artifacts near the eyes and electrocardiogram (ECG) components showing
regular cardiac activity. Representative examples of the removed components
are provided in Figures 2 and 3. Figure 2 illustrates the analysis results in
two-dimensional space, where IC9 and IC16 represent removed components
identified as electrooculogram artifacts. Figure 3 shows the analysis results
in a time-series format, with the vertical axis representing the component
amplitude and the horizontal axis representing time (seconds). IC19 was
removed as an ECG component. The a parameter was varied from 7 to 10,
while the RMS calculation window was held constant at 30 seconds. The
range of the a parameter was selected based on prior studies. In previous
research, a range of 2.5-5 was used for resting electrooculogram analysis.
In the present study, a range of 7–10 was selected for application to EEG
signals, which exhibit larger amplitude fluctuations. An a = 7 was found
to increase sensitivity at the cost of more false positives, whereas a = 10
decreased sensitivity while improving specificity. For the detection evaluation,
any detection within the manually annotated seizure period was classified as
a true positive. We quantified detection latency as the time delay between
seizure onset and the algorithm detection. A tolerance window of ±30
seconds was applied around the manually annotated seizure boundaries to
accommodate the RMS calculation delay and to account for potential inter-
rater variability in determining seizure onset. To identify factors needed for
accuracy improvement, we analyzed false positives that occurred both within
and outside the designated detection periods.

Table 1: Preprocessing steps.

Pre-Process

1. Bandpass filter (1-100 Hz)
2. Notch filter (60 Hz)
3. Removal of EOG and ECC using ICA
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Figure 2: ICA results (2D).

Figure 3: Time-series representation of ICA results.

RESULTS

Table 2 presents a parameter-dataset matrix listing the electrodes where
seizures were detected for each α value. Although detection was achieved for
every parameter value, not all datasets yielded detections across all parameter
combinations. False positives were present in every combination shown in
Table 2. The majority of detected electrodes were located in the temporal
and frontal lobes, which correspond to typical onset regions for pediatric
epilepsy (Nickels et al., 2012). Notably, the T7-FT9 electrode pair was
detected at all a values for dataset chb01-26, suggesting that this region may
represent the primary seizure focus. Figure 4 illustrates the EEG signals and
their corresponding thresholds for electrode pairs FT10-T8 (chb01-04) and
T7-FT9 (chb01-26). The EEG signal is shown by the blue line, while the
threshold derived by the AT method is represented by the green line. The
red sections indicate the time intervals during which seizures were annotated
in the dataset. Detection events occur where the blue line crosses above
the green threshold line, demonstrating that appropriate thresholds can be
effectively derived from EEG signals using the AT method. Nevertheless,
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some datasets did not show any detections, irrespective of parameter settings.
In these instances, potential seizure activity was often observed before or
after the annotated detection windows, with detections occurring in regions
not labeled as epileptic in the original dataset annotations. This highlights a
need to reconsider the definition and boundaries of the detection windows.
False positives were also observed in spike-like artifacts that resembled
noise rather than true epileptic activity. In addition to refining detection
windows, as discussed above, future work will need to incorporate waveform
classification algorithms to distinguish genuine epileptic discharges from
artifacts.

Table 2: Detection results for each α parameter with a 30-second RMS window.

Parameter

a = 7 a = 8 a = 9 a = 10
Dataset chb01-03 - - - -

chb01-04 FT10-T8 FT10-T8 - -
chb01-15 - - - -
chb01-16 - - - -
chb01-18 - - - -
chb01-21 FP1-F7, P7-O1,

FP2-F4, FP2-F8,
T7-FT9, FT9-FT10

FP2-F8, T7-FT9, - -

chb01-26 FP1-F3, C3-P3,
FP2-F4, FZ-CZ,
T7-FT9

FP1-F3FZ-CZ,
T7-FT9

T7-FT9 T7-FT9

Figure 4: EEG signals and corresponding thresholds derived using the AT method for
electrode pairs FT10-T8 (chb01-04) and T7-FT9 (chb01-26).

DISCUSSION: CONSIDERATION: DETECTION WHEN CHANGINGTHE
RMS CALCULATION TIME

The results previously discussed were derived from an RMS calculation
performed over a 30-second period. However, the AT method offers
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flexibility in this interval, a factor that could influence detection outcomes.
Consequently, we explored the effects of a 60-second RMS calculation
window. We maintained the same α parameter (7-10) to compare the results
with the 30 second window. The findings, presented in Table 3, indicate
that with a 60 second RMS window, detection was successful in all datasets
when a = 7. Furthermore, the total number of detected electrodes increased
compared to when the RMS was calculated over 30 seconds. Since the AT
method calculates its threshold directly from the EEG signal, it is subject to
signal fluctuations. Sudden signal fluctuations immediately before a target
can elevate the threshold, leading to missed detections. We found that
the 60 second window, by extending the RMS calculation interval, helped
to absorb some of these signal fluctuations and somewhat suppress the
threshold increase, thereby allowing us to detect waveforms that would have
been missed with the shorter 30-second window. Despite this improvement,
false positives continued to occur, suggesting that the RMS calculation
interval cannot effectively suppress them. Therefore, to enhance the accuracy
of epilepsy detection using the AT method, it is crucial to incorporate a
mechanism for determining whether detected waveforms represent genuine
epileptic activity.

Table 3: Detection results for each parameter (RMS: 60s).

Parameter

a = 7 a = 8 a = 9 a = 10
Dataset chb01-03 FP1-F7, FP2-F8,

F8-T8,
FT9-FT10

FP1-F7, F8-T8,
FT9-FT10

F8-T8

chb01-04 FP1-F7, FP2-F4,
F8-T8, FT10-T8

F8-T8, FT10-T8 FT10-T8 FT10-T8

chb01-15 T7-FT9
chb01-16 FP2-F8 FP2-F8

chb01-18 FP1-F7, P7-O1,
C3-P3, FP2-F4,
C4-P4, FP2-F8,
P8-O2, FZ-CZ,
FT9-FT10,
FT10-T8

FP1-F7, FP2-F4,
C4-P4, P8-O2,
FZ-CZ,
FT10-T8

C4-P4 C4-P4

chb01-21 FP1-F7, FP1-F3,
C3-P3, FP2-F4,
C4-P4, FP2-F8,
FZ-CZ,
T7-FT9,
FT9-FT10

FP1-F7, FP1-F3,
FP2-F4, FP2-F8,
FZ-CZ,
T7-FT9,
FT9-FT10

FP1-F7,
FP1-F3,
FP2-F8,
T7-FT9,
FT9-
FT10

T7-FT9

Continued
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Table 3: Continued

Parameter

chb01-26 FP1-F7, P7-O1,
FP1-F3, C3-P3,
FP2-F4, FP2-F8,
FZ-CZ, CZ-PZ,
T7-FT9

FP1-F7, FP1-F3,
FP2-F4, CZ-PZ,
T7-FT9

FP1-F3,
CZ-PZ,
T7-FT9

T7-FT9

CONCLUSION

This study applied the AT method to EEG data to investigate its efficacy
for epilepsy detection. Our findings indicate that successful detection was
achieved across multiple datasets when the RMS window was set to
60 seconds with an a parameter of 7. An examination of the detected
channels revealed that many were concentrated in the temporal and frontal
lobe regions, consistent with the typical onset zones pediatric epilepsy.
Nevertheless, a significant number of false positives were also observed.
Consequently, future efforts will need to incorporate methods for classifying
detected waveforms to distinguish between genuine epileptic activity and
artifacts.
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