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ABSTRACT

Adaptive automation enables dynamic reallocation of functions between people
and autonomous agents to improve performance in complex work. This paper
presents a meta-analysis of experimental and quasi-experimental studies (2000–2025)
on joint cognitive systems in industrially relevant contexts, quantifying effects on
task performance, safety/failure management, workload, trust, and learning. Across
studies, adaptive automation reliably reduces operator workload and shows moderate
gains in task performance and safety, with healthier trust dynamics when adaptations
are triggered by human-state or event cues, made transparent to the user, and
remain rapidly overridable. Risks emerge when performance-triggered switching is
opaque or poorly timed, which can erode trust, induce cognitive tunneling, or hinder
skill retention. The findings translate into actionable guidance for human-factors
researchers, system designers, and operations leaders seeking Industry 5.0 outcomes:
human-centric, resilient, and sustainable work systems in which digital teammates
help people do their best work.

Keywords: Adaptive automation, Joint cognitive systems, Human-automation teaming,
Industry 5.0

INTRODUCTION

Adaptive automation (AA), referred to as the dynamic reallocation of
functions between people and autonomous agents, has gained traction to
improve joint cognitive systems (JCS) in complex industrial work. Unlike
static automation, which fixes who does what, AA changes allocation in
response to context, operator state, or performance, aiming to blend human
flexibility with machine efficiency to enhance performance and safety while
managing workload (Parasuraman et al., 2000). This agenda aligns with
Industry 5.0, a vision of industrial systems that are explicitly human-centric,
sustainable, and resilient, placing worker well-being at the center and using
technology to empower rather than replace people.

Prior research on levels of automation (LOA) shows clear trade-offs:
higher degrees of automation can improve routine performance and reduce
workload, but they also degrade situation awareness and failure-recovery,
creating out-of-the-loop (OOTL) risks (Onnasch et al., 2014). These findings
build on a long line of JCS scholarship emphasizing that human and
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machine form an integrated cognitive unit (Hollnagel & Woods, 2005).
To mitigate LOA trade-offs, intermediate or adaptive approaches keep
operators engaged while dynamically shaping assistance. Laboratory work
on dynamic control tasks, for example, found that intermediate LOA and
AA improved performance and supported situation awareness relative to
fully manual or fully automatic baselines (Kaber & Endsley, 2004). A
central design choice in AA is who can change the allocation and when.
Adaptive systems shift control automatically based on triggers (e.g., events,
workload indices, performance), whereas adaptable systems let humans
initiate changes. Comparative experiments show meaningful differences:
under high stress, adaptable modes supported more active strategies and
higher self-confidence than purely adaptive modes; moreover, performance-
triggered AA sometimes increased perceived workload, fatigue, and anxiety
compared with event-triggered or adaptable control (Sauer et al., 2012;
Sauer & Wastell, 2013). These results highlight that trigger logic is not
neutral: state- or event-based triggers often pre-empt overload without
feeling punitive, whereas performance-based triggers can be experienced
as corrective and trust-eroding. Another recurring determinant of success
is transparency: making the system’s state, intent, and rationale visible
(Tatasciore et al., 2024; Gegoff et al., 2024; Lyons, 2014). In human-
autonomy teaming, transparency acts as a communicationmedium for intent,
enabling appropriate reliance rather than over- or under-trust.

METHOD

Protocol, Search Strategy, and Eligibility Criteria

A written protocol specified the review’s aims, eligibility criteria, outcomes,
moderators, coding instructions, and the analytic strategy, including
effect-size computation, random-effects pooling, heterogeneity assessment,
and bias/sensitivity checks. The scope focused on adaptive or adjustable
automation within joint cognitive systems (JCS) across industrially relevant
domains. We conducted a comprehensive search of Scopus (primary
database) and IEEE Xplore, and we hand-searched key journals including
Human Factors, Ergonomics, and the Journal of Cognitive Engineering
and Decision Making, covering January 2000 through August 2025. The
search strategy combined intervention and domain terms to capture the range
of adaptive function allocation implementations. Boolean operators and
truncation were used to account for spelling/terminology variants. Reference
lists of relevant reviews and empirical papers were scanned to identify
additional studies that would pertain to inclusion criteria.

Eligibility criteria required human-subjects experimental or quasi-
experimental designs that compared an adaptive condition (system-initiated
or user-initiated switching of automation level or assistance) against a
non-adaptive control (static automation or manual). Minimum reporting
standards included at least one quantitative outcome in task performance,
safety/failure management (including situation-awareness or failure-recovery
proxies), workload, trust, or learning/skill retention, together with sufficient
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statistics to compute or derive effect sizes (means, standard deviations, and
sample sizes, or convertible t/F/p values). Conceptual or modelling-only
papers, single-case demonstrations without a control condition, and papers
using “adaptive automation” in non-allocation senses were excluded. Only
English-language publications were considered for consistency of coding and
interpretation.

Study Selection

The database search returned 280 records. After deduplication and
title/abstract screening for relevance to adaptive or adjustable function
allocation, approximately 50 full-text articles were assessed in detail. About
15 articles were excluded at the full-text stage because they lacked human
data or did not provide sufficient statistical information for effect-size
estimation. Discrepancies in judgments were resolved through discussion,
and when consensus could not be achieved, a third reviewer provided
adjudication. This rigorous, multi-stage screening procedure was designed
to reduce the likelihood of bias and ensure that only studies meeting all
eligibility requirements were retained. This procedure minimized selection
bias and ensured that only studies meeting all eligibility requirements were
retained for synthesis. Ultimately 35 studies were deemed suitable for meta-
syntheses.

Data Extraction and Coding

Outcomes were organized into five families to curb construct proliferation:
(1) task performance (accuracy, throughput, error rate, response time),
(2) safety and failure management (critical-event detection, failure-recovery
measures, and validated situation-awareness proxies), (3) workload (multi-
item instruments such as NASA-TLX), (4) trust (validated scales and
appropriate reliance behavior), and (5) learning/skill retention (post-support
manual performance and transfer tests). When multiple indicators existed
within the same family, we prioritized validated or pre-specified primary
endpoints; if none were designated, we computed a composite by averaging
indicators at the relevant timepoint. Repeated-measures studies were coded
at the post-test or end-of-task assessment aligned with the authors’ primary
conclusions; alternative timepoints were retained for sensitivity analyses.
For cluster-allocated designs reported at the individual level, we adjusted
effective sample sizes using the reported intraclass correlation where the
design effect was non-negligible. Categorical moderators included domain,
primary task type (monitoring, control, mixed), trigger logic (state, event,
performance, hybrid), transparency level (low, moderate, high based on
whether the interface surfaced mode and rationale), and authority (adaptive,
adaptable, mixed-initiative). Inter-rater reliability on key categorical codes
exceeded 0.80 Cohen’s κ following calibration.

Evidence Synthesis

Effect sizes were calculated for each eligible comparison and then synthesized
within outcome families using random-effects models to respect the diversity
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of tasks, domains, and adaptive implementations. We report pooled
estimates with 95% confidence intervals and standard heterogeneity statistics
(Cochran’s Q and I2). Moderator patterns were explored descriptively and,
where cell sizes allowed, analytically via subgroup contrasts and meta-
regression for trigger logic, transparency, authority, domain, and task type.
Changes in the between-study variance were summarized to indicate the
extent to which moderators explained heterogeneity. Dependence arising
from multiple effects per study was handled via complementary strategies.
Primary models retained all eligible effects and were re-estimated using
(a) within-study averaging to yield a single independent effect per study
per outcome, and (b) cluster-robust variance estimators to adjust standard
errors for study-level clustering. Influence was examined with leave-one-
out diagnostics and DFBETA-style statistics; conspicuous outliers were
individually inspected and, when removed, did not change substantive
conclusions. Potential small-study and publication biases were assessed
visually with funnel plots and analytically with Egger’s regression when
feasible; trim-and-fill was presented only as a sensitivity illustration given
likely violation of its assumptions under true heterogeneity. Study-level risk-
of-bias codes informed narrative sensitivity analyses and interpretation of
pooled effects. All computations were performed in R, using well-established
packages for random-effects pooling and cluster-robust standard errors.

RESULTS

Effects on Performance, Safety, Workload, Trust, and Learning

We first report the quantitative synthesis of adaptive automation effects
on key outcome categories. Figure 1 presents a summary forest plot of the
overall effect sizes for four major outcomes (task performance, safety/failure
management, workload, and trust). These represent aggregate estimates
across studies (random-effects meta-analysis), highlighting general trends.
Positive Hedges’ g values denote improvement under adaptive automation
relative to the comparison condition (static automation or manual control),
with error bars indicating 95% confidence intervals.
Task Performance: Adaptive automation produced a moderate

improvement in task performance overall (mean g ≈ 0.35, CI ≈ [0.10, 0.60];
see Figure 1 above). In around half of the studies, participants completed
their primary tasks more accurately or faster with adaptive support than
without. For example, several experiments with simulated process control
and multi-UAV supervision found that adaptive aiding helped operators
handle surges in task load, maintaining higher detection rates or decision
accuracy than a static automation baseline. Kaber and Endsley’s dynamic
control task study noted that while overall system throughput was mainly
driven by LOA, the introduction of adaptive intervals significantly improved
performance on a secondary monitoring task, suggesting that freeing up
the human at opportune moments allowed them to catch events they’d
otherwise miss. Not all studies found a significant performance gain, in
some, adaptive and non-adaptive automation performed similarly, especially
under low workload conditions. Sauer et al. (2012), for instance, reported
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Figure 1: Overall effect sizes (Hedges’ g) for key outcome measures comparing
adaptive automation to non-adaptive (static/manual) control.

“no clear benefits” of one automation mode over another for primary task
performance in a low-stress setting. These null results typically occurred
in cases where the base automation was already handling the task well
(leaving little room for improvement), or where the adaptive logic was not
tuned optimally. Nevertheless, the overall trend across diverse tasks indicates
adaptive automation tends to improve or at least maintain task performance,
especially in high workload or multitasking scenarios where timely task
reallocations prevent performance breakdowns.

Safety and Failure Management
We use “safety” broadly to cover outcomes related to avoiding or handling
errors and accidents (e.g. successful responses to critical events, maintenance
of situation awareness, timely recovery when automation fails, etc.). Direct
safety metrics (like accident rates) were seldom obtainable in lab studies, but
proxies like situation awareness (SA) scores and failure response performance
were reported. Our synthesis finds a positive but modest effect of adaptive
automation on these safety-related measures (mean g ≈ 0.30, CI ≈ [0.05,
0.55]). Several studies demonstrated that adaptivity can keep the operator
more alert to intervene when needed. For instance, adaptive systems that
intentionally put the human “back in the loop” at intervals have been shown
to reduce the severity of out-of-the-loop performance problems, meaning
operators detect critical changes more reliably than under continuously
high automation. Adaptive automation’s safety benefit is closely tied to its
performance benefit under failure conditions. Onnasch et al. (2014) had
noted that static high-automation degrades failure-response performance,
and our results suggest adaptively managing automation levels can mitigate
this degradation. However, if adaptivity is poorly designed, it can introduce
new risks: mode confusion or over-reliance. Some studies warn that if the
automation adapts in a way that the human doesn’t anticipate, the human
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might fail to take over when the situation truly requires it, expecting the
automation to handle it.

Workload
A primary motivation for adaptive automation is to dynamically manage
operator workload, keeping it within acceptable bounds (neither too high
nor too low). The meta-analysis strongly supports that AA is effective in this
regard. We found a large reduction in subjective workload with adaptive
automation (mean g ≈ 0.50, CI ≈ [0.25, 0.75]), relative to fixed automation
or manual control. Nearly all studies that measured NASA-TLX or similar
reported lower workload ratings in adaptive conditions. In de Visser
& Parasuraman’s (2011) human–robot teaming experiments, participants’
workload was significantly lower with adaptive aiding than with either no
automation or static automation. Park et al. (2018) and Wang et al. (2020)
likewise found that adaptive task allocation kept workload at moderate levels
even as task demand fluctuated, whereas fixed automation led to periods of
overload. The only caveats came from studies where the adaptive logic itself
caused some operator stress (e.g. in performance-triggered adaptation). In
these instances, the operator might worry about “being taken over” when
they falter, which can inflate frustration or effort ratings. Interestingly, some
studies also noted lower physiological strain in adaptive conditions (e.g. heart
rate variability indicated less stress). It should be noted that underload can
be a concern as well. A few participants reported boredom in highly adaptive
scenarios where the system handled so much that they felt unengaged when
workload was low (Wang, 2020; Park, 2018; de Visser & Parasuraman,
2011). Ideally, the adaptation strategy tries to avoid extremely low workload
as much as extreme high workload, either by keeping the human somewhat
involved (for vigilance) or by re-engaging them periodically.

Trust in Automation
The effect of adaptive automation on operator trust is nuanced. Our
quantitative synthesis suggests a moderate positive effect on trust (mean
g ≈ 0.40, though with a wider confidence interval reflecting variability).
Many users reported higher trust in the automation when it was adaptive
and performed well, often because it seemed “smart” and responsive
to their needs. For example, participants in the adaptive condition of
De Visser et al. (2011) had significantly greater trust in the robotic
aids by the end of the session, compared to those who experienced a
static aid. This was likely because the adaptive aid only intervened in
high-workload moments, avoiding both under-helping and over-helping.
This calibrated the participants’ trust to the automation’s capabilities
appropriately. Additionally, adaptive systems that incorporated transparency
(e.g. displaying when they were in control or why they switched) saw better
trust calibration; users felt more comfortable relying on the system when
they understood its actions (Tatasciore, 2024; De Visser, 2011). On the other
hand, trust can be undermined if adaptation leads to erratic behavior. In one
study, an automation that changed modes too frequently or without clear
reason caused users to distrust it (“Is it working correctly or glitching?”
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they wondered). There’s also the issue of miscalibrated trust. This refers to
the notion that if the automation adapts in the background, users might
over-trust it, assuming it will catch everything. Thus, while the overall
evidence points to adaptive automation improving trust and reliance (people
appreciate a system that helps only when needed and doesn’t interfere when
not needed), this outcome is highly dependent on transparency and reliability.
Systems should ideally communicate their confidence and only adapt within
known reliable bounds to foster appropriate trust.

Learning and Skill Retention
Quantitative results on operator learning or skill retention were scarce. None
of the meta-analyzed studies specifically measured long-term skill retention
after using adaptive automation, and only two included a kind of “training
transfer” test (having participants perform the task manually afterward to
see if skills were retained). Those limited results were mixed: one found
no significant difference in manual skill between people who had adaptive
support versus static support, and another suggested a slight decline in
manual performance after adaptive automation (because the automation
had handled critical parts, users had less practice). Qualitatively, studies
acknowledged a concern that automation, especially if very effective, can
erode an operator’s skills over time (Sauer, 2013). Commonly referred to
as the “use/lose it” dilemma. Adaptive automation could mitigate this by
ensuring the human still exercises their skills periodically. Indeed, adaptable
automation might inherently support skill retention better: operators who
could choose lower LOA at times to practice or who kept themselves in
the loop had higher situation awareness and felt more competent. Another
idea is mutual learning: the system learns the human’s capabilities over
time and adapts less as the human gains proficiency, effectively tapering
off support to encourage learning. Such concepts were beyond the scope
of most studies reviewed but form an important area for future research.
If the goal is to maximize human skill development (a human-centric goal),
designers might lean toward adaptable elements or blended control that
keeps the human actively engaged in decision-making rather than completely
offloading everything.

DISCUSSION

The results provide encouraging evidence that adaptive automation can
deliver on key performance and human-factor improvements in joint
cognitive systems. Task performance gains and workload reductions were
especially pronounced, validating the core premise that dynamic function
allocation can boost efficiency while preventing operator overload. These
benefits align with earlier qualitative reviews calling AA a cornerstone of
human-centered automation by adjusting support to the human’s needs in
the moment, the system acts as a true “team player.” Importantly, we
found that these improvements do not universally come at the expense
of situation awareness or trust; on the contrary, when done thoughtfully,
adaptive automation maintained, or even improved SA and trust compared
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to static automation. This contrasts with the stark trade-off seen in
static high-automation (Onnasch et al., 2004’s “cost–benefit” trade-off). In
essence, adaptive automation shifts the balance, mitigating the downsides of
automation through timely human re-engagement. However, the magnitude
of benefits clearly depends on the following moderating factors: domain and
task context, trigger logic, transparency, automation authority, and workload
management vs. skill.
Domain and Task Context: Systems in high-tempo, high-risk domains

(military UAV control, aviation) tended to show the strongest effects of
adaptivity on performance and SA. In such domains, static automation
can lead to severe out-of-the-loop problems under abnormal events, so
adding adaptivity (especially event-triggered) yields noticeable improvements
(fewer misses, quicker transfers of control). In contrast, in simpler or lower-
stakes tasks (some manufacturing assistance scenarios), a well-designed static
automation might perform almost as well as adaptive, leaving less room
for gain. It suggests a principle: the more variable and unpredictable the
task demands, the more adaptive automation can help. Manufacturing
processes are increasingly variable (mass customization, variable production
schedules), implying rising relevance of AA in Industry 5.0 contexts.
Trigger Logic: This emerged as a pivotal factor. Our review reaffirms

that not all triggers are equal. Event-based triggers (especially for emergency
or fault handling) are generally effective and straightforward. They ensure
the human is in control when critical decisions must be made (an
Industry 5.0-aligned safety principle). Performance-based triggers can be
beneficial (they pre-empt performance crashes), but as noted, they risk
being too reactive and can surprise or even annoy operators. For example,
an operator might feel capable of recovering from a small error, but a
performance-based logic that instantaneously takes over upon detecting
the error might frustrate the operator (diminishing trust). Fine-tuning and
combining triggers are thus key. Some recent systems use hybrid triggers
(e.g. require both a performance drop and a high workload indicator
to switch) to avoid over-triggering. Additionally, involving the operator
in trigger definition (configurable triggers) can increase acceptance; this
crosses into adaptable territory but could be an interesting design where the
system suggests “I can step in now, shall I?” (mixed-initiative). Trigger logic
significantly moderated effects. State-based triggers produced the strongest
gains; event-based were mid-range; performance-based the smallest and least
consistent.
Transparency: A consistent theme was that transparency facilitated

success. Systems that clearly communicated their actions had users with
better calibrated trust and situational understanding. We recommend that
any adaptive automation include an interface element (visual, auditory, or
otherwise) indicating the current mode/LOA and preferably the rationale
(“Assisting because high workload detected”). Without this, users might
be confused by fluctuating system behavior, attributing it to malfunctions
or becoming complacent when they should be alert. One study explicitly
showed that adding a simple transparency display in an adaptive decision aid
significantly improved the user’s correct use of the aid. Thus, transparency is
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not just a “nice-to-have”; it is central to achieving the human-centric promise
of AA, ensuring the human remains an informed, effective team member
rather than a bewildered passenger.
Automation Authority &User Control:Our findings on trust and learning

highlight that giving the human some degree of control or override can
be very beneficial. While fully adaptive (closed-loop) systems offload the
human most, they can lead to skill atrophy and passive operator roles. On
the other hand, fully manual (adaptable) places all responsibility on the
human, which can negate the workload benefits. Amiddle ground is emerging
adaptive systems with user override and adjustable parameters. For example,
an adaptive system might normally act on its own, but if the user disagrees
or wants to take over, they can easily do so (and the system might learn
from that intervention). This builds trust, the user doesn’t feel trapped by
automation, and keeps the human mentally engaged. This corresponds to
mixed-initiative control, which we believe is a fruitful design for Industry 5.0
(empowering workers while still providing automated support). Designing
intuitive override mechanisms (voice command “I’ll drive now”, or a quick
double-tap on a control interface to suspend automation) is an area for
innovation. Moreover, training the human on how/when to assert control
is vital.
Workload Management vs. Skill: There is a tension between minimizing

workload and maintaining skill. Some adaptation strategies aggressively
minimize workload (the automation does everything it possibly can), which
yields low fatigue but can lead to boredom and skill fade. Others keep the
operator busy (perhaps for learning or engagement) which maintains skill
but at cost of higher workload. A few studies and conceptual papers suggest
an optimal balance: keeping workload in an intermediate zone (related
to the Yerkes-Dodson law of arousal vs. performance). Future adaptive
automationmight itself learn the optimal workloadwindow for each user and
adjust to keep them in that zone (this would be a form of personalization).
None of the studies explicitly did this, but several discussed the idea. For
Industry 5.0, where worker well-being is paramount, designing automation
that challenges but not overloads the worker could improve both productivity
and satisfaction.

CONCLUSION

Adaptive automation, designed as part of a joint cognitive system, can
materially improve industrial work when it is implemented with human
factors at the center. Across studies from 2000–2025, the weight of
evidence indicates reliable workload reductions, moderate gains in task
performance, and improvements in safety/failure management when three
design conditions are met: (1) state- or event-based triggers that pre-empt
overload, (2) transparent rationale for each mode change, and (3) mixed-
initiative authority with rapid human override. In contrast, opaque systems
or strictly performance-triggered interventions risk over-trust, cognitive
tunnelling, and negative transfer, reminding us that “more automation” is
not the same as “better teaming.” The field now needs longitudinal work
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on skill retention and transfer, open study-level data to enable moderator
meta-regressions, limit meta-analysis heterogeneity, and conduct human-in-
the-loop digital twin replications that test edge cases (sensor faults, rare
events) ethically and repeatedly. The next step is coordinated, domain-
specific replication inside simulation testbeds, with a shared evaluations
covering allocation policy, trigger logic, timing/granularity, transparency,
authority/override, sensing, mutual learning, and safety constraints. When
triggers are calibrated, reasoning is visible, and people keep the final
say, adaptive automation improves performance and safety while reducing
workload and safeguarding skills.
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