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ABSTRACT

Manufacturing companies must deal with a high level of volatility and uncertainty.
Consequently, the demand for agile and decentralized decision-making in the context
of production scheduling becomes apparent, since traditional rigid planning methods
are failing to adapt to real-time disruptions. This paper presents a concept and
architecture of a Digital Scheduling Dashboard, which is based on an autonomous
scheduling process enhanced by an Al-assisted optimizer. The DSD retains Enterprise
Resource Planning (ERP) systems as the authoritative baseline but delegates day-level
assignment authority to assembly workers. A non-prescriptive Al-based optimization
engine runs in the background, serving as a fact-checker by pre-computing complex
eligibility constraints and micro-conditions (such as machine readiness, material
status, qualification validity, and HSE incompatibilities) that are absent in the ERP’s
low granularity. The system presents workers with a pre-selected set of feasible
options while reserving the final order selection as the worker’s autonomous choice.
By combining employee autonomy with Al-assisted optimization, the use case aims to
improve responsiveness, reduce planning overhead, and optimize resource utilization
in fluctuating production scenarios.
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INTRODUCTION

The competitive global manufacturing landscape urges companies to
deliver high-quality products with superior speed, cost-efficiency, and
reliability in order to maintain market relevance (Bauernhansl et al., 2014).
However, production volumes are subject to considerable fluctuations
driven by volatile markets, extensive custom orders, and specific customer
requirements, making it challenging to accurately estimate workloads (Tolio,
2009). To thrive in this environment, companies must adopt flexible and agile
methods in both their manufacturing and work design (Oechsler, 2011).

A critical task in this context is workforce scheduling, where supervisors
must assign employees to workstations and orders to achieve high delivery
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performance and resource utilization. Yet, this process is highly vulnerable
to disruptions. Supervisors are forced to react to short-term events such
as machine breakdowns, employee absences, and missing material by
time-consuming re-planning instead of focusing on core leadership duties
(Stevenson et al., 20035).

Addressing this challenge, this paper presents a concept for agile and
decentralized production scheduling of flexible workforce utilization (see
also Bosse and Zink, 2019; Dregger et al., 2018; Dombrowski et al.,
2017). The scheduling is based on a short-term allocation of employees
to workstations and orders by the workers themselves at the beginning
of the shift. The planning department provides a pool of manufacturing
orders. On a digital scheduling dashboard workers can assign a suitable order
considering real-time data on capacity, priorities, and material availability.
Supported by an Al-based optimization algorithm, the decentralized
decisions of the workers are aligned with medium-term strategic targets.
This approach aims to significantly enhance responsiveness, reduce planning
overhead, and optimize resource utilization.

TRADITIONAL AND AGILE WORKFORCE SCHEDULING AND
CAPACITY PLANNING IN PRODUCTION

Effective workforce management is a core pillar of efficient production
systems. Traditional approaches are characterized by centralized, top-down
processes where supervisors or planners create detailed schedules to balance
often competing objectives: high delivery reliability, resource utilization, low
inventory, and short lead times (Tolio, 2009). This critical task, as highlighted
in the introduction, requires managers to assign employees to workstations
and orders to achieve optimal performance, yet it is highly vulnerable to
disruptions (Stevenson et al., 2005).

The process typically involves medium-term capacity planning that
translates the Master Production Schedule into aggregate resource
requirements to identify potential bottlenecks. Following this, a detailed
short-term schedule is generated, where specific employees are manually
assigned to tasks and machines based on their skills and qualifications. This
complex procedure is executed using static, non-adaptive tools such as Gantt
charts within ERP systems or traditional spreadsheets, which represent a
static snapshot in time (Vollmann et al., 2005).

In addition, production planning and scheduling typically require a defined
“frozen zone” of days or even weeks, to allow connected processes such
as manufacturing logistics to derive corresponding schedules for all raw
materials, components, and sub-systems (Graves, 2011).

However, these frozen zones inherently conflict with today’s short-term
priority changes.

The fundamental weakness of this paradigm is its rigid and static
nature. Manufacturing environments are inherently dynamic, subject to
fluctuations in volume, customer demands, and inevitable disruptions
such as machine breakdowns, material shortages, and employee absences
(Bauernhansl et al., 2014). Each of these events can instantly invalidate
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the pre-defined schedule. This forces supervisors or managers into time-
consuming manual re-planning, pulling them away from core leadership
duties and into reactive fire-fighting — a significant planning overhead that
creates a well-documented bottleneck (Stevenson et al., 2005). For companies
dealing with a high level of uncertainty, “policies, rules, and procedures, even
sensible ones, become barriers to strategic speed” (Kotter, 2014).

Agile organizations, on the contrary, focus on changing “hierarchy
into knowledge sharing, trust-based relationships, and collaborative
skills, and the role of management shifts from command and control
to facilitation and support” (Magalhdes, 2020; Gunasekaran, 2001).
While agile organizational approaches primarily evolved in white-collar
environments, similar transformations are emerging in manufacturing.
Traditional, hierarchical decision-making structures are replaced by self-
organized teams, minimizing or even eliminating the role of middle
management where possible. Such approaches emphasize a high degree of
team and employee autonomy as well as multidisciplinary competencies. As
a result, decision-making processes are increasingly delegated to the shop
floor level, enabling teams and individuals to make faster, more informed and
context-sensitive planning decisions that enhance overall flexibility (Pokorni
et al., 2022).

The biggest challenge when it comes to flexible re-scheduling in both
traditional and agile planning approaches lies in the delayed availability and
fragmentation of relevant shop floor information. Often, the data accessible
to supervisors is incomplete or outdated, leading to re-planning decisions
based on obsolete information. This not only reduces responsiveness but
also increases the risk of misaligned prioritization of production orders.
The model also treats workers as passive resources, failing to leverage their
knowledge and potential for autonomous decision-making. As a result, short-
term reactive adjustments frequently become decoupled from medium-term
strategic targets, such as flextime balances or the use of flexible workforce
pools.

The substantial manual effort required to maintain plan feasibility
undermines efficiency and adaptability, clearly highlighting the relevance for
an agile, Al-supported approach as proposed in this paper.

METHODOLOGY

Following the qualitative single-case study design (Yin, 2018), this
paper explores the potential of an Al-assisted digital dashboard for
production scheduling. The case study focuses on enhancing the company’s
existing decentralized scheduling approach through a digital and Al-assisted
dashboard. The design process of the digital dashboard and the underlying
optimization logic is based on the methodological framework proposed by
Bauer et al. (2018), specifically focusing on the Ideate and Prototyping
phases. These phases are based on a series of multidisciplinary workshops,
aiming at generating an Industry 4.0 solution space and further refining it
into a specific use case and multiple user stories.
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USE CASE DESCRIPTION

Initial Situation and Problem Description

In the initial stage, the agile planning concepts consisted of a self-
organized workplace and task allocation. Production controllers break
down orders into standardized two-hour partial order tasks. Assembly
workers independently assign themselves to these tasks and select a respective
workstation. This scheduling process is managed through an analog planning
board utilizing visual management principles.

However, the reliance on the analog board presented limitations
compromising the quality and robustness of the scheduling mechanism
process:

« Spatial constraints: The board has limited capacity and space (e.g.,
number of depicted orders, order details).

« Missing cross-validation: There is no automated cross-referencing with
other data sources (e.g., qualifications or safety clearances).

. Lack of real-time transparency: An analog board will always show
outdated information at some point.

. Limited decision horizon: Workers’ short-term scheduling perspectives
are limited to certain information to be manageable. There is no
alignment with medium-to-long-term goals or conflicting interests.

. Intensive manual intervention: Order modifications lead to extensive
digital and analog adjustments and manual handling of information.

The overall objective is to establish a single source of truth for all
stakeholders involved. Furthermore, the alignment with the company’s
planning principles and goals is indispensable. The system must deliver
information in pre-selected, lean, and contextualized form. This implies only
context-sensitive information should be displayed to eliminate information
overload. Figure 1 defines key aspects of context-sensitive information.

@ %D

Situation-aware Context-

integrated .
context-sensitive
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Time-dependent Person or role
specific
@ :
Location and resource adaptive
specific

Figure 1: Key characteristics of context-sensitive information.

The overall goal is to enable autonomous scheduling with maximized
scheduling quality and alignment with organizational objectives.
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AI-ASSISTED INTEGRATIVE WORKFORCE AND CAPACITY
MANAGEMENT

The Digital Scheduling Dashboard (DSD) is built on a flexible and
scalable Saa$ platform. This application architecture supports 1-N dedicated
instances (“spaces”), each with 1-N sub-pages. A Space can be implemented
as highly focused, single-purpose application (e.g. in case of the DSD) or as
a more complex, multi-page micro-app. The platform provides access from
industrial and shared devices such as hall monitors, machine HMIs, assembly
workstations, and shared tablets and phones.!

The ERP system serves as the authoritative planning baseline by
supplying all core data relevant for scheduling, including Master Production
Schedules/Plan, Material Requirements Planning, production orders,
routings, due dates. The scheduling is based on a weekly prospective:
manufacturing orders? are divided into shift-long partial orders (in this case:
early, late and night shift). The DSD’s primary function is not to dictate
workers the next order, but to enable the autonomous scheduling process
with intelligent background information. It translates the ERP baseline into
a feasible pool of orders, ensuring that assembly workers retain full decision
authority. Concretely, the system precomputes complex constraints and
eligibility criteria that the ERP-System does not model at this granularity,
including:

« Machine readiness, status and potential defects,

« Temporarily unavailable workstation,

« Current material and tool change status,

« Validity and expiration of employee qualifications (e.g. mandatory safety
briefings),

« Health, safety, and environment (HSE) considerations, including
individual incompatibility (e.g. adhesive intolerance),

« Availability of personal protective equipment (PPE) and related shop-
floor restrictions.

The outcome is a selected set of options: workers are presented only with
orders they are fully eligible to execute. The ultimate task selection remains
at the worker’s choice; with the system acting solely as an intelligent assistant
with transparent explanations.

Al-Assisted Scheduling Process

From the perspective of worker-board interaction, the scheduling process
remains consistent with the analog process. The Al-based optimization in
the background serves as a fact-checker.

The digital workflow follows these steps:

. Sign-In and Authentication: Workers authenticate on the shop-floor at
hall monitors, machine terminals/HMIs, or assembly workstations via
QR-code or Badge-ID,

I'Note: The current implementation excludes the use of personal devices (BYOD).

20rders can have a total manufacturing processing time of up to 1 week.
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Review Pre-Selected, Ranked Orders: Depicted information is based
on identity and context for real-time, role-aware notifications (e.g.,
“Material for Order #4711 is kitted; you are eligible to start”),

Order Selection: The worker selects a suitable order, either for immediate
execution or for up to one week in advance,

AI-Optimization and Validation: A background optimizer immediately
validates global feasibility of the selection against a defined set of
constraints (e.g. workers qualifications, legal/tariff rules, material
availability, machine capacity/readiness, potential impact on due dates)
Approved scheduling: The DSD commits the schedule if the selection is
feasible. If there is a conflict, the workers receive transparent guidance/
and “what-if” scenarios. A team lead escalation process is also in place.

Data Integration and Real-Time Information

To ensure real-time data availability, the integrated data sources operate with
individual refresh cadences, allowing each source to update independently
rather than being constrained by the slowest update cycle. Table 1
summarizes the respective refresh cadences.

Table 1: Data sources, information and update cadences of the DPS.

Data Source

Information

Update Cadence

ERP

HR/Time and Attendance

Qualification Management

Identity

Operational context
(optional)

production orders, routings,
due dates, bills of materials
workforce roster,
organizational units, shift
plans, clock-ins/outs,
absences
qualifications/certifications,
including validity/expiry
and mandatory briefings
(safety, general onboarding,
lean)

QR-code ID and Badge-1D
resolve to a single
workforce identity across
Spaces and touchpoints
Material status, kitting
status; machine
readiness/defects;
temporary area closures

hourly

multiple updates per day

Daily

multiple updates per day

hourly

All dataflows are versioned and auditable.

Al-based Optimization (non-prescriptive, background).

The Al-based optimizer runs strictly in the background and is non-
prescriptive. It provides feasibility checks, signals priority, and transparent
explanations to enable workers autonomy.

The engine addresses the complex decision context of worker-to-order
assignment. Table 2 shows exemplary In- and Outputs.
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Table 2: Exemplary key inputs and outputs of the Al-based optimizer.

Key Inputs Key Outputs

o Order due dates and processing times « Definitive feasibility confirmation
(including potential (e.g. “Order can start at 10:157,
sequence-dependent setup effects), « Eligibility status and blocking

« Worker-relevant information reasons (e.g. “Worker A is eligible for

Order B; Order C is blocked due to
HSE incompatibility™),

o “What-If”-Scenarios (e.g.
“Alternative X reduces due-date risk
but increases setup effort”).

attendance by time window,
worker qualifications/
certifications and required
qualifications per order,

« Feasibility mask per order/time
window summarizing material
availability, precedence constraints,
HSE incompatibility, and temporary
area/machine blocks,

o Machine capacity/readiness (zero if
defect/closed),

o Legal, tariff, and company rules
(hour limits, minimum rest, etc.).

The optimizer minimizes is designed to minimize the weighted combination of operational goals (e.g. maximizing
throughput, minimizing plan deviations) while including stability terms so plans do not oscillate during updates.

In the event of disturbances (such as changes in availability or resource
status), the DSD triggers an incremental re-optimization, adjusting only the
affected parameters to ensure stability.

Governance, Privacy and Data Protection

The governance is designed to preserve worker autonomy while ensuring
compliance with privacy, labor, and safety obligations. User identity is unified
and authenticated solely at shared shop-floor touchpoints (via QR or Badge-
ID), and access follows role-based access control with site and role scoping.
All configuration changes and worker selection events are logged to human-
readable audit trails to ensure accountability and transparency. The data
collection is strictly limited for the purpose of safety, auditability, and process
improvement. Retention and deletion procedures adhere to documented
schedules approved at site level.

In EU contexts, the approach aligns with General Data Protection
Regulation GDPR (lawful basis, purpose limitation, rights management) and
anticipates EU AI Act obligations for potentially high-risk functions through
documentation, risk management, human oversight, and traceability.

OUTLOOK AND FUTURE WORK

As a next step of the DSD, an optional GenAl-based transparency layer
using retrieval-augmented generation (RAG) will be piloted. This feature
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will use plain language (and worker’s preferred native language) to explain
why a given order is eligible or is not. The explanation will cover various
dynamic factors such as qualifications mismatch (including validity and
expiry dates), configured incompatibilities (e.g., adhesive intolerance), and
real-time material and machine readiness states. Additionally, the DPS will
display workers:

« Next-best eligible alternatives available to the worker,

o “What-if” scenarios (e.g., “if Machine M-23 is back at 10:15, Order
#4711 becomes feasible”),

. Citations to underlying sources (e.g. qualification record, HSE rule,
machine signal).

This enhanced transparency is expected to increase the traceability and
acceptance of proposed options from the worker’s perspective. The rollout
of this feature depends on the successful outcome of the piloting phase and
final approval by the workers’ council.

From an organizational standpoint, the role of the planner shifts from
time-consuming micro-coordination to exception leadership and policy
stewardship. Day-level coordination is effectively decentralized to the shop
floor. With the information flow fully digitized and visible to every worker,
planners can focus on higher-leverage tasks: ensuring robust data quality
across sources, setting and tuning priorities and guardrails (e.g., due-date
risk thresholds, fairness/rotation), and driving continuous improvement.

CONCLUSION

This paper outlined a concept for agile, Al-assisted planning that keeps
enterprise systems such as ERP systems, HR/Time, and Qualification
Management as the authoritative baseline while shifting day-level
coordination to the shop floor. The concept is operationalized through
the Digital Scheduling Dashboard, which presents workers with a pre-
selected set of feasible options filtered by parameters such as qualifications,
attendance, material and machine readiness, and HSE incompatibilities.
An Al-based optimizer supports in the background to prepare feasibility
checks, priority signals, and concise explanations. The streamlined process
significantly reduces coordination loops and planner bottlenecks while
simultaneously ensuring adherence to worker autonomy during scheduling.
As an outlook, optional RAG explanations will be piloted to offer plain-
language reasons, next-best alternatives, and short what-ifs with source
citations.
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