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ABSTRACT

This paper evaluates the capability of Large Language Models (LLMs) to support
Human Reliability Assessment (HRA) through a systematic test using the Integrated
Human Event Analysis System for Event and Condition Assessment (IDHEAS-ECA)
methodology. Using Claude Opus 4.1, we generated Steam Generator Tube Rupture
scenarios and subsequently tasked the model with producing a comprehensive
HRA analysis, which was then independently reviewed by two IDHEAS-ECA method
experts. The LLM demonstrated substantial domain knowledge, generating technically
coherent scenarios with appropriate procedural details and system responses,
and produced a structured analysis covering cognitive functions and performance
influencing factors. However, expert review identified critical methodological gaps
including conflation of concepts from different HRA methods, omission of formal
task analysis steps required by NUREG-2256, and inadequate human failure
events identification. While current LLMs show promise as auxiliary tools for
scenario generation and preliminary analysis, they require significant enhancement
before supporting safety-critical HRA applications. Future work should focus on
method-specific training, integration with structured knowledge representations (e.g.
knowledge graphs), and development of validation protocols to ensure appropriate
application boundaries.

Keywords: Large language models, Human reliability assessment, Nuclear power operations,
Knowledge graphs, IDHEAS-ECA

INTRODUCTION

The integration of generative artificial intelligence such as Large Language
Models (LLMs) with safety analysis methodologies represents an emerging
frontier in risk assessment, though direct applications to Human Reliability
Assessment (HRA) remain limited in current literature.

Current research shows some progress in integrating LLMs with
established safety analysis frameworks. The co-hazard analysis (CoHA)
approach demonstrates that LLMs can effectively support hazard cause
elicitation through context-aware interactions with human analysts (Diemert
& Weber, 2023). Similarly, ChatGPT’s integration with Failure Mode and
Effects Analysis (FMEA) has shown significant potential for automating
conventional risk assessment processes, generating failure modes that human
analysts might overlook while accelerating analysis timelines (Xu, 2025).
Multi-agent LLM systems employing Retrieval Augmented Generation
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(RAG) for risk analysis have been developed to interface directly with
FMEA knowledge databases, generating targeted recommendations for
completing FMEA spreadsheets (Xia et al., 2024). These developments
extend to Systems-Theoretic Process Analysis (STPA), where LLM-integrated
frameworks have been shown to support the synthesis of unsafe control
actions (UCAs) and loss scenarios (Raeisdanaei et al., 2025).

However, a critical gap emerges when examining direct applications
to traditional HRA methods. While research demonstrates that machine
learning systems can be trained to automatically classify accident reports
involving human error, thereby expanding existing databases (Morais et al.,
2022), the specific application of generative LLMs to produce structured
HRA analyses remains largely unexplored.

Several critical challenges emerge from this literature for LLM-generated
HRA analyses. First, the inherent uncertainty in human reliability analyses
may be compounded by LLMhallucination tendencies, potentially generating
plausible but incorrect Human Error Probabilities (HEPs) or Performance
Shaping Factor (PSF) assessments. Research examining LLM safety through
verification and validation techniques has categorized vulnerabilities into
inherent issues, attacks, and unintended bugs (Huang et al., 2024),
highlighting the complexity of ensuring reliable outputs in safety-critical
applications. Second, many traditional HRA methods rely on structured
decision trees and quantitative multipliers that require precise application—
areas where LLM reliability remains questionable. Third, the regulatory
and certification requirements for HRA in safety-critical industries demand
traceable, repeatable analyses that may conflict with the probabilistic nature
of LLM outputs.

The literature suggests that while LLMs show promise for supporting
certain aspects of safety analysis, their direct application to generating
complete HRA analyses represents a significant leap requiring careful
validation. Research on AI’s role in detecting and mitigating human
errors across safety-critical industries (Gursel et al., 2025) provides a
comprehensive overview but focuses primarily on detection rather than
reliability assessment. The maturity of LLM integration with structured
safety methods like FMEA and STPA provides a foundation, but the analysis
precision and regulatory requirements of HRA methods present unique
challenges not yet addressed in current research.

The IDHEAS-ECA methodology was developed by the U.S. Nuclear
Regulatory Commission and formally introduced around 2020 to improve
consistency and cognitive grounding in HRA. Led by researchers from the
Office of Regulatory Research, it addresses limitations in earlier methods by
integrating cognitive science and operational data. IDHEAS-ECA is especially
suited for modeling operator actions under severe conditions, including
scenarios outside control rooms and during low-power or shutdown states
(Xing et al., 2022). Its selection here is based on its empirical foundation,
structured approach, and well-developed qualitative analysis framework.

IDHEAS-ECA stands out by modeling human performance through
five macrocognitive functions—Detection, Understanding, Decision-Making,
Action Execution, and Interteam Coordination—each linked to specific
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Cognitive Failure Modes (CFMs). Analysts using this method typically
assess scenario context, define Human Failure Events (HFEs), and apply
20 Performance Influencing Factors (PIFs) to evaluate error likelihood.
The method’s stepwise process, supported by standardized worksheets and
data sources like Scenario Authoring, Characterization and Debriefing
Application (SACADA), ensures traceable and consistent HRA outcomes.

This paper aims to practically examine the idea of supporting the
HRA analyst become more efficient by moving from the conventional
structured checklist-type analysis to leveraging the potentials of generative
AIs like LLMs. The following sections of the paper outline the methodology
employed, presents the results, discusses the findings, implications, limitation
of the study, and potential solutions. We also outline potential future
directions for this research and provide a conclusion.

METHOD

This study employed a multi-stage approach to evaluate LLM capabilities
for Human Reliability Assessment applications, using ClaudeOpus 4.1 for all
generation tasks. The method consisted of scenario generation, HRA analysis
generation, expert review, and synthesis of findings.

The first stage employed an LLM for scenario generation to assess multiple
capabilities simultaneously. Scenario generation requires understanding of
nuclear plant systems, operational procedures, accident phenomenology,
and human-system interactions, allowing evaluation of the model’s domain
knowledge across these interconnected areas. This approach tested whether
LLMs can generate technically coherent accident progressions suitable for
HRA analysis while providing insights into their ability to structure complex
technical information.

Critically, all scenario information came entirely from within the
model’s training data—no plant-specific information, procedures, or human
performance data were provided as input. This constraint tested the
model’s intrinsic nuclear operations knowledge, revealing it must have
ingested detailed emergency operating procedures, system descriptions,
and operational practices during training. The model likely synthesized
knowledge from multiple plants, regulatory documents, and technical
publications, though this aggregation could create inconsistencies where
elements from different plants or vendors are combined.

The prompt instructed the model to assume a senior reactor operator
role at a Westinghouse-type Pressurized Water Reactor (PWR) plant and
generate two Steam Generator Tube Rupture (SGTR) scenarios—baseline
and complex—in JSON format (JavaScript Object Notation). JSON was
selected for its unambiguous field delineation, explicit relationships between
data elements, and consistent syntax that reduces interpretation ambiguity in
LLM applications. The baseline scenario represented a straightforward single
tube rupture, while the complex scenario introduced multiple complications
including equipment failures, degraded conditions, and reduced crew staffing.

The generated scenarios were subsequently provided to the same LLMwith
instructions to perform an HRA using the IDHEAS-ECA method. The model
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produced a comprehensive qualitative HRA analysis including human failure
event identification, cognitive function analysis for each event, performance
influencing factor assessment, and comparative analysis between the baseline
and complex scenarios.

The generated HRA analysis was forwarded to two method experts
with instructions to review the analysis quality, methodological accuracy,
and technical coherence. Both experts provided detailed comments directly
annotated in the document, identifying strengths and limitations in the LLM’s
application of the method.

The expert reviews were analyzed to identify common themes, including
areas where the LLM demonstrated strong understanding versus those
requiring improvement.

RESULTS

LLM-Generated Scenario

The LLM produced seven main sections: SGTR overview, plant-specific
information, baseline scenario, complex scenario, procedural appendices,
human factor analysis information, and timing windows. The baseline
scenario depicted a single tube rupture with straightforward diagnosis, while
the complex scenario introduced multiple complications including stuck-
open atmospheric dump valve (ADV), loss of instrument air, failed pressurizer
pilot-operated relieve valve (PORV), and loss of offsite power.

Generated procedures followed standard Westinghouse Owners Group
formats:

This demonstrates understanding of SGTR diagnostic methodology,
including multiple radiation monitoring points and transition logic. The
scenario progression incorporated realistic complications:

This accurately portrays a stuck-open ADV with appropriate position
indication and acoustic confirmation—realistic control room indications for
diagnosing valve position.

The model demonstrated sophisticated understanding of integrated plant
response. Time windows distinguished between predicted performance and
requirements:
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This appropriately scales time with leak rate and identifies critical safety
concerns of water relief through safety valves.

However, the model’s aggregated training data introduces potential
inconsistencies. The SI actuation setpoint (1,865 psig) and main steam
isolation setpoint (585 psig) may not correspond to the same plant
design. Emergency core cooling systems (ECCS) configuration and auxiliary
feedwater capacities might reflect composite designs rather than coherent
configurations. While not invalidating scenarios for training purposes,
this highlights the importance of plant-specific validation for actual safety
analyses.

LLM-Generated IDHEAS-ECA Analysis

The LLM generated an HRA analysis structured in six sections:

1) Scope and objectives
2) Human failure event identification
3) Scenario 1 – baseline SGTR Analysis
4) Scenario 2 – complex SGTR Analysis
5) Comparative analysis of baseline versus complex scenarios
6) Conclusions and HRA recommendations

Six HFEs were identified (presented by the LLM as shown on Table 1)
for both scenarios and analyzed across five cognitive functions: Detection,
Understanding, Decision-Making, Action Execution, and Teamwork. The
analysis identified applicable Cognitive Failure Modes (CFMs) and PIFs for
each scenario.

Table 1: HFEs identified by the LLM.

HFE ID Description Success Criteria Time Window Procedure

HFE-1 Diagnose SGTR and identify
ruptured SG

Correctly identify SGTR
and affected SG(s)

To to To + 15
min

E-0 Steps
11-18

HFE-2 Isolate ruptured SG Complete isolation of
steam and feed flow

To + 10 to
To + 25 min

E-3 Steps
1-4

HFE-3 Perform RCS cooldown Cool RCS to target
temperature

To + 15 to
To + 45 min

E-3 Steps
11-14

HFE-4 Depressurize RCS to terminate
break flow

Reduce RCS pressure
below ruptured SG
pressure

To + 25 to
To + 50 min

E-3 Steps
15-18

HFE-5 Prevent SG overfill Maintain ruptured SG
level <88% NR

Continuous E-3 Steps
26-27

HFE-6 Terminate SI when criteria met Stop ECCS injection at
appropriate conditions

To + 30 to
To + 60 min

E-3 Steps
19-23
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Methos Expert’s Review of the LLM-Generated Analysis

This section presents the HRA experts’ key findings with specific examples
from the LLM-generated analysis.

Missing Process Steps. The analysis omitted critical IDHEAS-ECA steps
including scenario analysis with operational narrative and context analysis,
timeline establishment, and task analysis before CFM identification. For
example, the LLM began directly with HFE definitions without providing
the required operational narrative:

The experts noted: “Missing IDHEAS-ECA 3.1 Step 1 Scenario Analysis...
Missing 3.1.1 Develop the Operational Narrative... The HFEs are not
incorrect, but they are not at the level of HFEs defined in IDHEAS.”

HFE Definition Issues. The identified HFEs were too granular for
IDHEAS-ECA methodology. The LLM separated actions that should be
modeled together:

Expert comment: “HFE-3 and 4 are commonly modeled as an HFE
because they are iterative actions and one affects the other. HFE-5 and 6
are embedded in HFE-3 & 4.”

Cue Identification Problems. While the model identified technically
accurate cues, it included pre-trip indications that wouldn’t be credited in
actual PRA analysis:

Expert comment: “Even though the detection occurs before reactor trip,
PRA analysis typically only credits the cues explicitly identified in the
procedures (E0 here).”

Documentation Deficiencies. The analysis did not follow IDHEAS-ECA’s
structured worksheet format. When identifying PIFs, the LLM used non-
standard categories:

Expert comment: “IDHEAS-ECA PIF structure begins with ‘no impact’
state then becomes ‘negative’ if certain PIF attribute is assessed as ‘present.’
PIFs have no ‘positive’ state.”
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CFM Identification. The analysis failed to explicitly document when CFMs
were not applicable. For HFE-6 in the baseline scenario, the LLM evaluated
only three cognitive functions without explaining why Action Execution and
Interteam Coordination were omitted:

Expert comment: “Action CFM ismissing here. The error of understanding
and decision-making is negligible.”

Method Contamination. The analysis conflated terminology from
different HRA methods. Most notably, it consistently used “Teamwork”
instead of the correct IDHEAS-ECA term:

Expert comment: “Teamwork should be replaced with interteam
coordination... Responding to a SGTR event typically does not need
interteam coordination.”

CFM Terminology: The LLM used incorrect CFM nomenclature
throughout:

Expert comment: “IDHEAS-ECA has five CFMs... There is no ‘CFM D1’.
In IDHEAS, the symbols D1-D5 (and U1, U2...) are for processors that
together achieve the macrocognitive function.”

Unsupported Conclusions: The analysis provided insights without
completing necessary quantitative steps:

Expert comment: “What is the definition of ‘dominant failure modes?’ If
they mean the CFMs that dominate the HEPs... the PIF attribute assessment
and HEP calculation haven’t been performed yet.”
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DISCUSSIONS

The LLM demonstrated good domain knowledge, generating technically
coherent SGTR scenarios with realistic plant responses and procedural
details. However, the expert review revealed methodological issues that limit
its current utility for formal HRA applications.

The model’s ability to synthesize complex technical information suggests
strong potential as an auxiliary tool for scenario generation and preliminary
analysis. It correctly identified critical human actions and understood the
relationships between plant systems, procedures, and operator responses.
This capability could support HRA analysts in the initial stages of analysis,
particularly for training scenarios or preliminary hazard identification.

However, the systematic methodological errors indicate that current
LLMs lack the structured reasoning necessary for formal safety analysis.
The conflation of different HRA methods suggests the model’s training
data included multiple methodologies without clear delineation, leading
to contaminated outputs. The omission of required analytical steps and
improper use of terminology would make such analyses unsuitable for
regulatory submissions or safety-critical applications.

The experts’ emphasis on following structured processes highlights a
fundamental challenge: HRA methods require strict adherence to sequential
analytical steps where each output becomes input for subsequent analyses.
Current LLMs, trained on diverse textual data, struggle to maintain this
methodological rigor without explicit guidance.

PROPOSED SOLUTIONS

Integration With Knowledge Graphs

Knowledge graphs offer a promising solution to address the methodological
rigor required for HRA applications. A knowledge graph for HRA would
represent methods, procedures, plant systems, and their relationships as
structured, interconnected data rather than unstructured text. This approach
would provide several advantages:

For an HRA application, the scope of a knowledge graph would
encompass:

• Method ontologies: Formal representations of HRA methods (IDHEAS-
ECA, SPAR-H, THERP) with their specific steps, terminology, and
requirements.

• Plant systemmodels: Structured representations of system configurations,
dependencies, and failure modes.

• Procedural networks: Emergency operating procedures linked to plant
states and operator actions.

• Human performance data: Structured repositories of performance
shaping factors and their quantitative relationships.

The primary challenge lies in the initial knowledge engineering effort
required to construct comprehensive graphs. Once established, these graphs
would be highly scalable, allowing addition of new plants, procedures, or
methods through structured templates. Knowledge graphs enhance LLM
capabilities by providing:
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• Contextual grounding: LLMs can query structured data to verify
terminology and methodological requirements.

• Consistency enforcement: Graph constraints ensure outputs comply with
method-specific requirements.

• Traceability: All analytical decisions can be traced to specific nodes and
relationships in the graph.

• Validation support: Outputs can be automatically checked against graph-
encoded rules and constraints.

However, this approach also presents challenges, including development
cost (creating comprehensive knowledge graphs requires significant expert
input), maintenance effort (graphs must be updated as methods and
procedures evolve), and integration complexity (effective LLM-knowledge
graph interfaces require sophisticated query and reasoning mechanisms).

Method-Specific Fine-Tuning

Beyond knowledge graphs, LLMs could be fine-tuned on curated datasets
of properly executed HRA analyses. This would involve creating training
sets that explicitly demonstrate correct methodological application, proper
terminology usage, and appropriate documentation standards. Combined
with structured prompting techniques that enforce step-by-step analysis, this
could significantly improve methodological adherence.

Hybrid Human-AI Systems

Rather than fully automated analysis prior to human review, hybrid
systems where LLMs support specific subtasks under human supervision
may be more appropriate for near-term applications. For example, LLMs
could generate initial scenario descriptions that analysts refine, or provide
real-time documentation assistance while analysts perform the core reliability
assessment.

Future Research Directions

This study highlights several areas requiring further investigation:

1. Development of standardized evaluation frameworks for LLM-
generated safety analyses.

2. Creation of benchmark datasets for HRA method training and
validation.

3. Investigation of prompt engineering techniques specific to structured
analysis methods.

4. Use of LLM reasoning capabilities for enhanced logical consistency.
5. Development of explanation mechanisms that make LLM reasoning

transparent and auditable for safety applications.

The evolution of AI-assisted HRA will likely proceed incrementally,
with initial applications in low-consequence training and preliminary
analysis contexts, gradually expanding as validation methods and regulatory
frameworks mature. Success will require close collaboration between AI
researchers, HRA practitioners, and regulatory bodies to ensure that
technological capabilities align with safety requirements and methodological
standards.
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CONCLUSION

This study provides empirical evidence of both the benefits and limitations
of current LLMs for supporting Human Reliability Analysis. While Claude
Opus 4.1 demonstrated substantial nuclear domain knowledge and generated
plausible scenario descriptions, it failed to correctly implement the IDHEAS-
ECA methodology, producing analyses that would be unsuitable for safety-
critical applications.

The findings suggest that LLMs could serve as valuable auxiliary tools
for HRA analysts, particularly in scenario generation, initial brainstorming,
and documentation assistance. However, significant development is needed
before these systems can reliably support formal HRA work. The path
forward requires addressing both technical and methodological challenges
through structured approaches.
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