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ABSTRACT

In aviation, actions and decisions must often be made rapidly, without ever
compromising safety. With the growing advancement of artificial intelligence and
human–machine teaming, digital assistants are increasingly being developed to
support flight crews and air traffic controllers, potentially enabling operations with
reduced crew sizes. In this paper, we reviewed a range of such systems designed
for pilots and air traffic controllers, described their core functionalities, modes of
interaction, and potential impact on human performance and safety. Their primary
capabilities include supporting situation awareness, enhancing decision-making,
managing cognitive load, regulating stress, and maintaining operator authority.
Some systems also incorporate physiological monitoring to assess cognitive or
emotional states and dynamically adjust automation levels to optimize performance
and engagement.
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INTRODUCTION

The generalization of artificial intelligence, along with the recent trend
toward further reducing aircraft crew sizes, has stimulated numerous research
efforts aimed at developing digital assistants (Ceken, 2024), also referred
to as virtual assistants (Gilles et al., 2025), adaptive assistants, cognitive
assistants (Flemisch & Onken, 1998; Simon et al., 2020) or intelligent
assistants. These systems are often designed to support operators working
in highly critical environments, such as pilots or air traffic control officers
(ATCOs). While automation has traditionally focused on replacing or
simplifying discrete tasks, digital assistants represent a conceptual shift
toward collaborative autonomy (Jameson et al., 2005). Conventional
automation executes predefined functions (e.g., autopilot, flight management
systems) according to fixed logic and limited contextual awareness. In
contrast, a digital assistant seeks to understand, anticipate, and adapt to
the operator’s cognitive and operational state. It interacts through natural
modalities: speech, gesture, or adaptive displays, and operates as a teammate
rather than a tool. Digital assistants can integrate cognitive monitoring,
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context inference, and adaptive communication to maintain an optimal
human–machine balance of authority and workload. Instead of always
automating entire tasks, the assistant can provide guidance, just-in-time
reminders, or dynamic reallocation of subtasks depending on the operator’s
mental state. This approach aligns with principles of augmented cognition
and flexible autonomy, emphasizing transparency, explainability, and human
agency. Ultimately, while automation aims to substitute human control, a
digital assistant aims to amplify it, preserving operator engagement and
situation awareness even under high workload. In this paper, we review
various digital assistants that have been developed for pilots and ATCOs,
including several assistants in which the authors of this review paper were
involved.

EXAMPLES OF DIGITAL ASSISTANTS FOR THE COCKPIT

CASSY/CAMA. The idea of developing digital assistants for pilots or ATCOs
is not new. The Cognitive Assistant System (CASSY) was developed in
the 1990s (Flemisch & Onken, 1998) as an experimental framework to
explore adaptive cooperation between humans and automation in complex
domains such as aviation. Based on the principle of cooperation in control,
CASSY aims to support the operator without replacing human authority
by dynamically adjusting its level of autonomy to the current situation. It
continuously monitors task progress and environmental context and infers
pilot intentions to maintain shared situation awareness. The system detects
inconsistencies between pilot actions and contextual demands, and may
issue context-dependent alerts, propose corrective actions, or engage in
cooperative dialogue with the pilot while maintaining transparency and
low cognitive load. CASSY later evolved into CAMA (Crew Assistant
for Military Aircraft) (Flemisch & Onken, 1998), a real-time, mission-
oriented system designed for high-stress military environments. CAMA
integrates multiple cognitive agents (for navigation, communication, and
threat management) coordinated through a centralized situation model. It
is triggered during mission deviations, tactical threats, or workload peaks,
and can also act proactively to prevent hazardous maneuvers. Simulation
studies demonstrated that CAMA enhances mission effectiveness, situational
awareness, and safety while preserving the pilot’s central role in decision-
making. Together, CASSY and CAMA exemplify the shift from rigid
automation to adaptive, context-sensitive cognitive cooperation between
humans and machines.
COGPIT. Within the COGPIT project, Taylor et al. (2003) proposed a

cognitive assistant for the cockpit, capable of dynamically adjusting its level
of autonomy to support pilots experiencing spatial disorientation or loss
of situation awareness. The architecture integrated three main components:
COGMON (Cognition Monitor), for real-time monitoring of the pilot’s
cognitive state; SASS (Situation Assessment Support System), for assessing
mission context and recommending actions; and TIM (Tasking Interface
Manager), for managing task and interface allocation. Depending on the
pilot’s impairment level, the system can issue alerts, suggest corrective
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actions, or temporarily assume control. This work is significant as an early
conceptualization of a cockpit cognitive assistant, moving beyond reactive
safety nets toward proactive, adaptive cognitive support in flight operations.
AdaptiveCoPilot. Wen et al. (2025) developed the AdaptiveCoPilot, a

neuroadaptive cockpit guidance system that dynamically adjusts visual,
auditory, and textual feedback according to the pilot’s cognitive workload,
as measured by functional near-infrared spectroscopy (fNIRS). A preliminary
study involving three expert pilots informed rules for switching modalities
and calibrating information load during preflight procedures. These rules
guided the integration of cognitive state monitoring, behavioral data, and
adaptive strategies within a context-sensitive large language model (LLM).
The system was subsequently tested in a virtual reality (VR) cockpit simulator
with eight licensed pilots, comparing its effectiveness to baseline and
randomized feedback conditions. Findings revealed that AdaptiveCoPilot
improved the proportion of time pilots spent in optimal cognitive states for
working memory and perception, while also reducing task completion times.
Flight Eye Tracking Assistant (FETA). FETA (Lounis et al., 2020)

represents an attempt to integrate eye-tracking technology as an active
flight-deck assistant. The system aims to enhance pilots’ visual monitoring
of cockpit instruments, a key factor in preventing human-factor related
incidents during critical phases such as approach and landing. FETA
continuously compares the pilot’s current gaze behavior with a reference
database of “standard” visual scanning patterns established from previous
recordings of sixteen experienced airline pilots who performed approach
and landing tasks in a flight simulator (see Figure 1). When the pilot’s
visual scan deviates too much from these expert models, for example,
if the airspeed indicator has not been fixated for an abnormally long
period, the system emits an auditory alert (e.g., “check speed”) to redirect
attention toward the relevant display. A proof-of-concept evaluation was
conducted with five professional pilots performing landing scenarios of
varying monitoring difficulty in an Airbus A320 simulator. Results indicated
that FETA effectively increased visual attention toward the monitored
instruments (speed, vertical speed, and heading), confirming its ability to
redirect gaze toward critical flight parameters. However, effects on flight
performance and subjective workload were mixed: in simpler scenarios,
FETA slightly increased workload and speed deviations, whereas in more
demanding conditions, it tended to improve heading accuracy and situational
awareness. Overall, this first version of FETA demonstrates the feasibility
of using real-time gaze analysis as an adaptive cockpit aid. Yet, several
limitations were identified, including the potential interference of voice alerts
with ATC communications and the need to combine gaze data with flight
parameters to reduce false alarms. The authors suggest that future iterations
could incorporate multimodal feedback (visual or haptic) and intelligent
context adaptation, enabling the system to adjust its monitoring strategy
across different flight phases. Schwerd and Schulte (2024) addressed one
of the main limitations of FETA, the generation of false or untimely alerts,
by incorporating flight parameters data into the alert triggering logic to
determine whether an apparent lapse in visual attention is really operationally
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relevant. They demonstrated that this hybrid approach substantially reduced
unnecessary alerts while maintaining the assistant’s ability to detect genuinely
inadequate monitoring.

Figure 1: Left: the FETA interface. The cockpit is modeled, and the areas that turn
blue correspond to “cooling” zones, regions that have not been looked at for a certain
time. This time is based on a database of standard gaze patterns previously recorded
from commercial airline pilots. The zones turn green again when the pilot looks at
them again. Top right: the pilot inside the flight simulator, the eye-tracking system is
embedded into the instrument panel. Bottom right: eye-tracking recording software.

The Cognitive Shadow. The Cognitive Shadow is a proof-of-concept
system designed to support pilot decision-making in cognitively demanding
contexts, particularly in Single-Pilot Operations (SPO). It models individual
pilots’ judgment patterns using policy capturing, a data-driven method that
infers implicit decision rules from observed choices. The system monitors
decisions in real time and notifies the pilot when a discrepancy arises between
their choice and the model’s prediction. Rather than taking control, it acts
as a cognitive safety net, providing feedback while preserving pilot authority
and situational awareness. Three experienced pilots participated in simulated
unstable approach scenarios, deciding whether to continue descent or go
around based on 15 contextual variables. Using seven supervised machine-
learning algorithms (e.g., logistic regression, decision trees, SVMs), the
Cognitive Shadow learned each pilot’s decision strategy online and provided
adaptive feedback. Results showed strong predictive accuracy of the pilot
decision, with about 89% for individual models and 100% for the group
model. The study demonstrates the feasibility of using policy capturing
to develop adaptive, non-intrusive decision-support systems that replicate
expert reasoning and help prevent cognitive errors, acting as a cognitive
safeguard for pilots exhibiting abnormal behaviors and decisions under
challenging situations.
HARVIS. The primary objective of HARVIS (Duchevet et al., 2022) is

to enhance decision-making reliability, situation awareness, and operational
safety when approach parameters deviate from stabilization criteria. HARVIS
incorporates expert pilot knowledge to predict situations in which a go-
around is necessary, in a manner quite analogous to the cognitive shadow. The
system continuously monitors critical flight variables such as airspeed, glide
slope, and aircraft configuration, comparing observed values with expected
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ones. When deviations exceed tolerance thresholds (derived from expert pilot
knowledge) a go-around suggestion is issued, see Figure 2.

Figure 2: HARVIS assistant requesting a go-around due to abnormal flight parameters.

HARVIS also integrates eye-tracking measurements to detect abnormal
visual monitoring of the cockpit based on pilots’ eye-fixation patterns.
If an abnormal flight parameter is detected simultaneously, the system
provides a notification prompting the pilot to direct their gaze toward the
neglected parameter. The assistant employs adaptive automation, modulating
its level of intervention based on flight conditions and pilot workload.
In order to test HARVIS, a human-in-the-loop experiment was conducted
with seven professional pilots using an A320 simulator. Participants
performed multiple approach scenarios both with and without HARVIS
assistance to assess behavioral and subjective outcomes. Results indicated
that HARVIS significantly improved the accuracy and timeliness of go-
around decisions. Pilots reported high trust and acceptability, particularly
when the system’s reasoning was explicitly communicated. However, no
significant reduction in overall mental workload was observed. Instead,
HARVIS appeared to redistribute cognitive resources, allowing pilots to
maintain a broader situational overview. The study identified potential
risks related to automation complacency and emphasized the necessity of
maintaining pilot engagement through system transparency.

During another study (Bejarano et al., 2022), HARVIS acted as a dynamic
rerouting assistant, also for SPO. The system this time employs deep learning
models trained on previous flight trajectories and meteorological data to
predict and generate alternative routes in real time. Its primary objective
is to support pilots during unexpected events, such as adverse weather or
system failures, by proposing safe and efficient rerouting options. HARVIS
integrates various sources of information, including aircraft data (such as
position, heading, speed, engine status, and fuel consumption), characteristics
of nearby airports (location, category, approach types, runway specifications,
and maintenance facilities), as well as meteorological information such
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as METAR and TAF reports for the destination. It also considers the
availability of medical services for passenger care if needed. By automating
route computation, it aims to reduce cognitive workload and enhance
situational awareness during high-stress situations. However, challenges
remain regarding system validation, explainability, and integration into
existing cockpit workflows. For example, pilots reported that HARVIS
sometimes displayed excessive data, which increased their workload. Overall,
the two studies highlight HARVIS as a promising framework for adaptive,
data-driven flight assistance, supporting decision-making in critical flight
phases, while also emphasizing the significant challenges that must be
addressed before such an assistant can be widely adopted by pilots.
FOCUS. This assistant (Duchevet et al., 2024) helps reduce acute stress

responses and supports cognitive functioning under pressure by modulating
breathing rate and attention simultaneously. FOCUS triggers subtle changes
in cockpit lighting (see Figure 3), which serve as visual cues to help the
pilot to adopt a breathing cycle of 10 seconds, known to increases cardiac
coherence (McCraty & Zayas, 2014) and reduce stress, a method already
applied in aviation (Landman et al., 2020). With FOCUS, the pilot can
also monitor their heart, which helps increase self-awareness of their own
physiological state and creates opportunities to engage stress-regulation
support if needed. FOCUS also simulates a 60 bpm heartbeat through a haptic
wristband to regulate stress as it can lower the perceived anxiety and heart
rate (Choi & Ishii, 2020). This physiological feedback not only enhances pilot
engagement but also improves the transparency of the assistant’s functioning,
as it explains when and why certain supportive features are activated. In
addition, FOCUS guides the pilot’s attention toward critical information,
using visual and auditory cues to highlight key parameters or alerts that might
otherwise be overlooked. A global situation awareness score, displayed on
screen, indicates whether flight parameter monitoring is required. A widget
mimicking the Primary Flight Display (PFD) further suggests which areas of
interest should be checked to improve this score, thereby enhancing both
situational awareness and trust in the system. This multimodal approach,
combining physiological monitoring, attentional guidance, and adaptive
feedback, aims to maintain optimal situational awareness and reduce the
risk of partial or total cognitive incapacitation. FOCUS’s effectiveness was
evaluated in an A320 simulator with five qualified pilots. The feedback was
positive, with pilots perceiving the assistant as a valuable and transparent
addition to the cockpit. These evaluations will inform future iterations
of FOCUS and deepen understanding of human-AI interaction in flight
situations. In the future, the assistant should have an automatic startle effect
detection module.
CPAI. CPAI (Liu et al., 2016) is a conceptual framework designed

to assist SPO by actively managing cognitive workload and enhancing
situational awareness. The CPAI’s core functionality lies in its knowledge-
based adaptive mechanisms, which continuously assess both the pilot’s
cognitive state, including attention, workload, and stress, and the aircraft’s
operational parameters. Based on this assessment, the system provides real-
time decision support, issue context-sensitive alerts, and suggest optimal
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control actions, effectively prioritizing tasks and reducing pilot overload.
The interface integrates proactive assistance, anticipating pilot needs before
critical situations arise, alongside reactive support that responds to emergent
events or deviations from expected flight conditions. It dynamically adjusts
its level of automation, offering task delegation, alert management, and flight
plan optimization depending on the phase of flight and pilot state. The CPAI
also emphasizes transparent interactions, ensuring that all recommendations
and automated actions are interpretable and predictable to maintain pilot
trust. Through its combination of monitoring, adaptive guidance, and
intelligent decision support, the system aims to minimize human error
while enhancing operational efficiency. Overall, the CPAI demonstrates a
comprehensive approach to enabling cognitively cooperative flight decks,
supporting safe and efficient single-pilot or reduced-crew operations.

Figure 3: Illustration of FOCUS. The brightness of the screen borders (green rectangles)
as well as the ambient colour of the cockpit is pulsating at the breathing frequency
required for cardiac coherence, guiding the pilot to breathe at this optimal rhythm.

EXAMPLES OF DIGITAL ASSISTANTS FOR AIR TRAFFIC CONTROL

CODA. The Controller Adaptive Digital Assistant (CODA) (Hurter et al.,
2025) represents an advanced adaptive automation concept designed
to support ATCOs in managing cognitive workload and maintaining
situational awareness during complex en-route operations. Building on
the neuroergonomic principles of human-AI teaming, CODA continuously
monitors ATCOs’ cognitive states, such as workload, stress, vigilance,
and fatigue, through multimodal neurophysiological signals (Electroen-
cephalography - EEG, Electrodermal Activity - EDA, Photoplethysmography
- PPG). These inputs, combined with real-time traffic and task-load
indicators, feed an Adaptive Automation Strategy (AAS) that dynamically
determines the optimal level of automation support. The AAS relies on
a decision-tree logic that integrates both current and predicted measures
of traffic complexity, task demand, and mental states, selecting between
three adaptive modes: no automation, automation light (partial task
delegation), and automation strong (full task delegation). This mechanism
ensures that automation is engaged only when necessary, preserving
operator agency while reducing overload risks. In practice, the system
can autonomously manage non-critical aircraft and provide proactive,
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context-sensitive recommendations, allowing controllers to focus on higher-
priority decisions (Figure 4). CODA’s design explicitly addresses well-
known challenges of static automation, such as out-of-the-loop performance
(Endsley & Kiris, 1995), trust erosion, and loss of skills, by maintaining
transparency through explainable decision rules displayed on its human-
machine interface. The system’s performance was evaluated using the
Human-Machine Performance Envelope (HMPE), a composite metric
integrating neurophysiological, behavioral, and subjective indicators to
quantify the joint efficiency of the human-AI team. Through human-in-the-
loop simulations on the ecologically-relevant EUROCONTROL ESCAPE
platform, CODA demonstrated that adaptive, explainable automation can
effectively balance workload, preserve situational awareness, and sustain
trust, offering a concrete path toward resilient, cognitively aligned digital
assistance in future air traffic management operations.

Figure 4: Digital assistant developed in the CODA project for en-route air traffic
controllers. Two interfaces are shown: one for the controller (left panel) and one for
the AI system (right panel). For each interface, three columns are displayed, showing
the time scheduler (left column) and the allocation of flights/tasks to the controller or
the machine (middle and right columns). Task complexity is indicated by color coding,
and a diagram (upper right) is used to indicate the combination of neurometrics, tasks,
and traffic complexity.

TRUSTY. The TRUSTY (Trustworthy intelligent system for remote
digital tower) SESAR project developed a digital assistant called APSARA
(AI-Powered Situational Awareness for Remote Airfields) within the
frame of Remote Digital Towers (RDT) to explore how explainable and
trustworthy AI can enhance human-AI collaboration in air traffic services
delivered remotely (Ahmed et al., 2025). Unlike conventional automation,
APSARA operates as a decision support system that supports ATCOs
by generating context-sensitive predictions and explanations of air traffic
dynamics (Hurter et al., 2022). Its architecture integrates perception,
prediction, and explainability modules: the perception layer fuses multimodal
sensory inputs (e.g., video data streams, audio pilot-pilot frequency
communications) to establish an operational air picture; the prediction layer
anticipates dangerous events/situation or anomalies; and the explainability
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layer communicates these insights through intuitive human-centered visual
explanations directly integrated into the controller’s monitoring interface.
This data is processed through multimodal machine learning algorithms,
to detect and notify the ATCO of situations with increased risk, such as
wind shear or a runway incursion (Figure 5). These visual overlays highlight
areas of higher operational relevance or uncertainty, enabling controllers to
understand not only what the system recommends but why. APSARA is
grounded in principles of trust calibration and human-AI teaming, seeking
to understand how to preserve the build-up and maintain of optimal
trust dynamics over time rather than maximize blind reliance. The system
was validated through experimental studies in remote tower simulators
involving professional ATCOs, combining behavioral, subjective, and
neurophysiological measures. Although results from the initial evaluations
are still preliminary, they underline the relevance of APSARA’s transparent
and adaptive feedback mechanisms as a foundational step toward the
development of next-generation digital assistants ready for full operational
integration in remote tower environments.

Figure 5: Digital assistant developed in the TRUSTY project for remote tower air traffic
controllers. Video data streams coming from a remote airfield and audio pilot-pilot
communications are analyzed through multimodal algorithms to provide a trustworthy
context-sensitive evaluation and recommendation for the controller. Here, transparent
and adaptive feedback mechanisms are intended to be delivered through continuous
monitoring of the controller’s neurophysiological states.

CONCLUSION

The digital assistants described in this paper monitor, support, and enhance
operator performance through adaptive, context-sensitive interventions.
Their function encompasses supporting situation awareness (e.g., FETA,
FOCUS), helping operators to cope with stress (e.g., FOCUS), or providing
decision-making support (e.g., Cognitive Shadow, HARVIS), while preserving
operator authority. CAMA, AdaptiveCoPilot, or CPAI bring an emphasis on
cognitive load, for example with CAMA reducing information overload, or
CPAI taking into account cognitive load for adjusting the automation level to
lower mental fatigue and keep the pilot mentally engaged. CPAI or FOCUS
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takes into account pilot cognitive state with physiological measures. Among
the assistants taking into account physiological measures, FOCUS uniquely
targets stress regulation and resilience, combining physiological monitoring,
guidance for relaxation, and cues to orient attention to mitigate startle
effects. In the ATC domain, CODA provides predictive traffic management,
task prioritization, and situational awareness support, paralleling cockpit
assistants in its adaptive AI-driven monitoring, highlighting the convergent
goal of enhancing safety, reducing cognitive load, and fostering effective
human-AI collaboration.

More recent works generally propose assistants based on artificial
intelligence, such as the AdaptiveCoPilot. However, despite AI advances and
the multiplication of such digital assistants (Würfel et al., 2023), a long path
is needed for those systems to be fully accepted and trusted by operators.
Current systems are often tested with a very low number of pilots, for
example only three pilots with the AdaptiveCoPilot or the Cognitive Shadow.
Beyond digital assistant systems, there is an intensive discourse on the ways
humans can interact with AI-based technologies, how to measure the quality
of the interaction, and how the performance of a certain task should be
divided between these two entities. Concepts such a fluency, measuring the
quality of the human-AI interaction, offer promising avenues (Pinto et al.,
2025).
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