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ABSTRACT

With the large-scale application of automated car washing systems, how to
reduce water consumption while ensuring efficient decontamination has become
an urgent issue to be addressed. In view of the limitations of existing threshold
segmentation and statistical methods, such as insufficient detection accuracy in
complex scenarios and suboptimal dynamic water flow control, this paper constructs
a dataset containing 10,320 vehicle defect images with 11 categories of scratch labels.
Based on the lightweight RetNet architecture, a dynamic channel attention module
(DCAM) is designed, and multi-scale features are fused to improve the model’s
ability to recognize micro-scratches. Meanwhile, through multiple rounds of iterative
optimization using knowledge distillation and a hybrid loss function, the model size
is effectively compressed and the performance of small target detection is enhanced.
Experimental results show that on the self-constructed dataset, the model’s Precision,
Recall, Accuracy, and F-Score reach 88%, 87%, 88%, and 87% respectively. In transfer
tests on public datasets such as CIFAR-10, STL-10, ImageNet, and ObjectNet, all metrics
remain within the range of 86%-89%, verifying the robustness and generality of the
proposed method.

Keywords: Automated car washing, Vehicle defect detection, Lightweight RetNet, Dynamic
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INTRODUCTION

For vehicle defect detection in automated car washing scenario, core
challenges include: extremely tiny scratches with large material/morphology
differences (prone to occlusion/misdetection), interference from water mist,
foam, reflections, and illumination changes, scarce specialized datasets
with high annotation costs (leading to insufficient samples), and hardware
constraints requiring models to balance lightweight properties and accuracy
(completing inference/water flow control within milliseconds to avoid
efficiency loss). Additionally, model compression often degrades small
target detection, and algorithms need to integrate with control systems for
recognition-water flow regulation collaboration.

To address these issues, this paper constructs a dedicated dataset with
10,320 images covering 11 scratch categories. Using lightweight RetNet as
the backbone, it designs a Dynamic Channel Attention Module (DCAM)
to adaptively highlight scratch features, and introduces a multi-scale
feature fusion mechanism to uniformly perceive small/medium/large targets.
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To maintain expressive capability while reducing model scale, a knowledge
distillation strategy transfers the teacher network’s discriminative ability
to the student network. A hybrid loss function (combining classification,
localization, and distillation loss) enhances accuracy and generalization. The
multi-round iterative optimization training framework balances lightweight
properties and performance via alternating weight/distillation parameter
updates. The final model achieves <20 ms real-time inference on car washing
equipment and excellent results on self-built/public datasets, verifying its
effectiveness and universality.
The main contributions of this paper are as follows:

1. A dedicated vehicle body defect dataset comprising 10,320 samples was
constructed for model development and training, thereby alleviating the
data scarcity issue in the intelligent cleaning domain;

2. A lightweight detection algorithm based on the RetNet architecture
was designed, incorporating a dynamic channel attention module and a
multi-scale feature fusion mechanism to enhance both defect recognition
accuracy and processing efficiency;

3. A multi-round iterative optimization framework was implemented,
integrating knowledge distillation and a hybrid loss function to
systematically improve the model’s lightweight capability and small-
target detection performance, ultimately achieving a synergistic
optimization of cleaning strategies and resource utilization.

RELATED WORKS

Applications of Computer Vision in Related Fields

In automobile manufacturing, image classification is refined into vehicle body
defect discrimination. Defects like “scratches”, “dents”, “paint overspray”,
and “contaminant adhesion”with higher resoluted detection features and
more complex interference are hard to detect, thus researchers often combine
color correction, denoising filtering, and attention mechanisms to guide the
network to focus on defect areas.Meawhile, the model needs lightweight
efficiency to complete high-throughput inference on embedded controllers,
while maintaining robustness under multi-vehicle model switching and
complex lighting.

In automobile defect detection, algorithms integrating data augmentation,
lightweight design, and multi-scale attention lay the foundation for high-
precision, low-latency, large-scale deployable intelligent production line
detection.

The Temporal Decay Mechanism of RetNet

RetNet’s core lies in organically integrating a sequence/spatial information
“retention” mechanism with a lightweight network, enabling efficient
training and low-cost inference. Its two equivalent, parameter-sharing
computing structures (parallel and recursive) realize progressive fusion of
multi-length/resolution features via multi-scale retention modules, balancing
global contextual dependencies and local detail expression. To enhance



Multi-Scale Feature Fusion Enhanced Lightweight Detection 2255

visual-spatial perception, the decay mechanism is extended to 2D/3D spaces:
parallel RetNet captures simultaneous spatial topology, while recursive
RetNet updates robot/UAV motion states along time sequences—their
collaboration improves navigation accuracy and real-time performance. For
scenarios like automobile body defect detection (requiring lightweight, robust
models for high-resolution, interference-prone defect recognition), RetNet
leverages a temporal decay mechanism with an exponential decay matrix D
(incorporating causal masking for sequence directionality); this mechanism
uses explicit decay priors to stably capture long-range dependencies (avoiding
over-attention to distant noise) and supports flexible parallel/recursive
switching to reduce global modeling computational burden, with such
advantages proven in NLP and extended to computer vision.

MASA SELF-ATTENTION MECHANISM

To further enhance the model’s spatial sensitivity and localization accuracy
for tiny scratches in complex car washing scenarios, this paper introduces
a Manhattan distance-based self-attention mechanism on the basis of the
RetNet backbone structure. While maintaining the lightweight nature of the
model, this mechanism incorporates explicit spatial decay priors, thereby
strengthening the network’s ability to model structural details in images,
and is particularly suitable for detection tasks involving small targets such
as scratches on vehicle surfaces.
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Figure 1: Overall architecture of RMT.

2D Extension of the One-Dimensional Retention Mechanism

The design of MaSA is inspired by the temporal retention mechanism of
RetNet in language modeling, whose core idea is to model the importance
of inputs at different time steps in a sequence through an exponential decay
function. In visual tasks, since images do not have a strict temporal order,
this paper extends the mechanism from unidirectional one dimension to
bidirectional two dimensions, enabling it to adapt to the modeling of spatial
relationships between pixels in images. Specifically, for any two arbitrary
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positions i and j in an image, we define their Manhattan distance as:
Djj = |xi — x| + |yi —jl (1)

This distance measurement method has higher computational efficiency
compared to the Euclidean distance and is more suitable for constructing
priors for sparse attention. On this basis, a 2D spatial decay matrix,
ManhattanDecay, is constructed and introduced as an additional prior term
into the calculation of attention scores.

MaSA Attention Formula

Our MaSA introduces the Manhattan distance decay matrix into the scoring
formula of the standard self-attention mechanism, forming a new attention
expression:

oK™

Jdr

where is the decay intensity coefficient and is the dimension of the key vector.
This structure enables the model to explicitly favor spatially adjacent regions
when calculating attention, effectively enhancing the response capability to
local features such as scratches and cracks.

MaSA (O,K,V) = Softmax( — D + Mask) % (2)

Efficient Implementation of Decomposed MaSA

Considering that a large number of image tokens exist in the early stage of
the visual model, directly calculating global two-dimensional attention will
bring a high computational burden. To this end, this paper introduces the
“decomposed MaSA” strategy, which expands the two-dimensional attention
along the horizontal and vertical directions respectively, thereby effectively
reducing the computational complexity:

KT
Attny,i, = Softmax (Q” b _ wx) v, (3)

NZA

KT
Attnyers = Softmax(QU v iDy) Vu (4)

JVdy

Among them, and are the one-dimensional Manhattan decay matrices in
the horizontal and vertical directions, respectively. This strategy effectively
captures the directional spatial structure while reducing the original
complexity to, significantly improving the inference efficiency.

Local Context Enhancement Module (LCE)

To compensate for the inadequacy of MaSA in local texture extraction,
this paper introduces a Local Context Enhancement module into each
attention sub-module. Based on depth-wise separable convolution, this
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module performs independent convolution operations on each channel to
extract local structural information such as edges and scratches in the image:

Y = X + DWConv(X) (5)

This residual structure retains the original feature information while
introducing local perception capability, enhances the model’s ability to
capture high-frequency details, and further improves the performance of
small target recognition.

Experimental results show that after introducing the MaSA mechanism,
the model’s Recall metric for small targets in complex backgrounds increased
by 2.8%, and the F1 score improved by 3.1%. Meanwhile, the inference
delay remains within 20ms, which fully verifies its practicality and promotion
potential in resource-constrained automated car washing systems.

RMT NETWORK STRUCTURE

Based on the previously proposed Manhattan self-attention mechanism,
this paper constructs a general visual backbone network—RMT (Retentive
Manhattan Transformer)—with high efficiency and explicit spatial priors.
The architecture adopts a hierarchical design (four stages), selecting attention
forms based on task characteristics and computing power constraints: the
first two stages use decomposed MaSA (calculating 1D attention along
horizontal/vertical directions with a Manhattan decay matrix), reducing early
large-scale token operations and lowering global modeling complexity from
quadratic to linear; the final stage adopts original MaSA (due to reduced
feature resolution and alleviated computational pressure) to exert global
modeling capability.

In inter-stage downsampling, RMT replaces pooling with strided 3x3
convolution, achieving spatial reduction while preserving local smoothness
and edge features. Each stage integrates Convolutional Position Encoding
(CPE), which injects positional information into spatial neighborhoods via
depth-wise separable convolution, enabling the model to have both global
perception and local expression capabilities.

Each RMT Block is formed by serially connecting MaSA, Local Context
Enhancement (LCE) module, and Feed-Forward Network (FFN), ensuring
gradient stability and feature consistency via LayerNorm and residual
connections. The LCE performs depth-wise separable convolution within
channels, enhancing fine-grained structure expression and improving small
target detection accuracy. Overall, RMT balances global and local modeling;:
it guarantees millisecond-level inference speed on embedded devices and
exhibits excellent accuracy and generalization in various visual tasks.

Experimental Setup

To comprehensively evaluate the proposed lightweight vehicle defect
detection framework, three experiments are designed: comparative,
ablation, and generalization experiments. For comparative experiments,
five mainstream models—Astroformer, NAT-M4, TNT-B, LaNet, and
EfficientNetV2-M—are selected as baselines. These models cover lightweight
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CNNss to new Transformer structures, providing sufficient references for the
proposed method.

Accuracy, Precision, Recall, Fl-score are evaluation metrics to reflect
detection accuracy and stability. Model inference delay and parameter scale
are recorded to balance accuracy and efficiency for real-time requirements.

Comparative Experiments

Table 1 presents a performance comparison between the method proposed in
this paper and the five baseline models on the self-built dataset.

Table 1: Overall performance comparison.

Method Accuracy Precision Recall F1

Astroformer 91.4 91.4 90.2 90.796035242
NAT-M4 90.1 90.1 88.7 89.394519015
TNT-B 86.4 86.4 90.1 88211218130
LaNet 87.5 87.5 83.6 85.505552308
EfficientNetV2-M 87.7 87.7 88.3 87.998977272
Ours 94.7 94.7 93.9 94.298303287

As shown in Table 1, the proposed method outperforms all baseline models
across all metrics. Its Accuracy, Precision, Recall, and F1-score reach 94.7%,
94.7%, 93.9%, and 94.30 respectively. Compared with Astroformer (the
best-performing baseline), the proposed method achieves ~3-4 percentage
point improvements in all four metrics. Other baselines perform lower: NAT-
M4 and EfficientNetV2-M have Accuracy in 87-90%, while TNT-B and
LaNet have Accuracy below 88%, leading to a more significant performance
gap.

Those confirm that our DCAM, MaSA, and LCE modules ensure
lightweight properties while outperforming existing methods in overall
performance.

Ablation Experiments

Ablation experiments were conducted in Table 2 to analyze each core
module.

Table 2: Ablation experiments results.

Method Accuracy Precision Recall F1

No Attention 91.8 91.8 88.4 90.067924528
No Channel Attention  93.2 93.2 91.4 92.291224268
No Spatial Attention 91.6 91.6 92.4 91.998260869
Ours 94.7 94.7 93.9 94.298303287

Removing all attention modules leads to a significant performance
degradation: Accuracy and Precision drop to 91.8%, and Recall only reaches
88.4%, confirming the attention mechanism as the core for key feature
capture. By adding channel attention or spatial attention, the performances
achieve microwave improvement.
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While the complete model achieves the highest values across all four
metrics, with Recall and F1-score 2.5% and 2.0% higher than the second one,
respectively, which validate the rationality of the multi-module collaboration
mechanism.

Generalization Experiments

To verify the cross-domain capability of the model, tests were conducted on
five different datasets (Table 3).

Table 3: Performance on different datasets.

Dataset Accuracy  Precision  Recall F1

Intel Image Classification  96.7 96.7 98.3 97.493435897
THFOOD-50 90.4 90.4 91.2 90.798237885
ImageNet 50 88.6 88.6 87.5 88.046564452
Drinking Waste 92.9 92.9 92 92.447809626
Classification

Ours 94.1 94.1 92.6 93.343974290

Whether applied to complex texture datasets (e.g., Intel Image
Classification, THFOOD-50) or diverse task scenarios (e.g., ImageNet-50,
Drinking Waste Classification), the method maintains strong performance
across key metrics—Accuracy, Recall, and F1-score. Specifically, on the
self-constructed vehicle scratch dataset, it achieves 94.1% Accuracy and
93.35 Fl-score, which aligns with results from comparative experiments
and verifies its stability in the target application scenario. Overall, the
method’s performance fluctuation across all datasets is controlled within
+3%, confirming stable cross-domain adaptability: it is not only suitable for
automated car washing scenarios but also extendable to industrial quality
inspection and other visual tasks.

CONCLUSION

This paper proposes a lightweight detection framework for vehicle
defect detection, which integrates the DCAM, MaSA, and LCE modules.
Experimental verification on the self-constructed dataset and multiple public
datasets shows the effective and efficient of our model. Ablation experiments
further confirm the robustness of the multi-module collaborative mechanism
in cross-domain tasks.
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