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ABSTRACT

Adversaries (hackers) attempting to infiltrate networks frequently face uncertainty
in their operational environments. This research explores the ability to model and
detect when they exhibit ambiguity aversion, a cognitive bias reflecting a preference
for known (versus unknown) probabilities. We introduce a novel methodological
framework that (1) leverages rich, multi-modal data from human-subjects red-
team experiments, (2) employs a large language model (LLM) pipeline to parse
unstructured logs into MITRE ATT&CK-mapped action sequences, and (3) applies
a new computational model to infer an attacker’s ambiguity aversion level in near-
real time. By operationalizing this cognitive trait, our work provides a foundational
component for developing adaptive cognitive defense strategies.
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INTRODUCTION

Modern cybersecurity has evolved beyond a purely technological arms race
into a complex, strategic interaction between human actors. While technical
fortifications remain a necessary foundation for security, the inherent
asymmetry of cyber conflict in which a defender must protect all assets while
an attacker need only find one vulnerability necessitates a paradigm shift.
A growing body of research suggests this asymmetry can be rebalanced by
understanding, anticipating, and even exploiting the cognitive vulnerabilities
and inherent biases of human attackers. Traditional security measures, which
are often static and signature-based, prove insufficient against adversaries
that employ novel and adaptive tactics. Consequently, a new frontier in
cyber defense is emerging, one that models the adversary not as a monolithic,
perfectly rational actor, but as a human decision-maker subject to the same
psychological pressures and heuristics that govern behavior in all other
domains.
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BEYOND RISK: AMBIGUITY IN ADVERSARIAL ENVIRONMENTS

A central challenge in modeling adversary cognition is accurately
characterizing the environment in which they operate. Much of the existing
work implicitly frames the attacker’s problem as one of decision-making
under risk, where the probabilities of various outcomes (e.g., an exploit
succeeding, an action being detected) are known or can be reasonably
estimated. However, this paper contends that the operational reality for
an attacker is far better described by the concept of ambiguity, a state of
uncertainty where such probabilities are unknown, incalculable, or unreliable
(Knight, 1921).

Ambiguity (or Knightian uncertainty) arises in situations that are novel,
complex, and/or lack sufficient historical data to form a stable probability
distribution over outcomes. An attacker navigating an unfamiliar network,
encountering bespoke security configurations or predicting the response of
a human network administrator faces precisely this kind of uncertainty.
Their decisions are less like betting on a fair coin flip (risk), but rather
akin to betting on an unfair dice roll with unknown and unknowable
bias (ambiguity). This distinction is not merely semantic; it points to
fundamentally different psychological mechanisms governing choice and the
downstream modelling decisions.

Ambiguity Aversion Versus Loss Aversion

Current research in cognitive cybersecurity aims to exploit cognitive biases or
vulnerabilities for psychology-informed defense. A current focus of research
like the IARPA ReSCIND program has been on loss aversion, a well-
documented bias where individuals weigh potential losses more heavily than
equivalent gains (Hans et al., 2025). Models grounded in prospect theory
(Kahneman&Tversky, 1979) operationalize loss aversion by having an agent
evaluate the subjective utility of actions based on estimated gains, losses,
and their associated probabilities (Huang et al., 2024). For example, the
probability of an attacker choosing an aggressive action, γ , is modeled as a
function of the subjective utility, ε, of aggressive (a) versus stealty (s) options,
where (e) itself is a function of a loss aversion coefficient, λl:

γ
(
a, s, λl

)
:=

1

1 + e−µ(ε(a,λl)−ε(s,λl))

While valuable, such models presuppose an environment of risk, where
the parameters for gain, loss, and probability are accessible to the agent’s
decision calculus.

This work proposes a shift in focus to ambiguity aversion, defined as the
preference for options with known probabilities over those with unknown
probabilities. This phenomenon is famously illustrated by the Ellsberg
Paradox (Ellsberg, 1961). In its classic formulation, individuals are asked to
bet on drawing a colored ball from one of two urns. Urn A contains 50 red
and 50 black balls (a known risk). Urn B contains 100 red and black balls
in an unknown proportion (an ambiguous decision). A robust finding is that
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people will systematically prefer to bet on a color from Urn A, regardless of
which color they choose, thereby avoiding the ambiguity of Urn B.

This preference for the known over the unknown is profoundly relevant
to cybersecurity. An attacker’s choice between exploiting a well-documented
vulnerability in a standard Windows server versus probing a custom-built,
undocumented application is a direct analogue of the Ellsberg choice. The
former represents a known risk, while the latter is fraught with ambiguity.
Therefore, we argue that ambiguity aversion is a more fundamental and
ecologically valid construct for modeling attacker behavior in the wild. It
captures the core psychological challenge of acting in the face of irreducible
uncertainty, a challenge that is often more pressing than the simple weighing
of potential gains and losses. Table 1 provides a clear conceptual distinction
between these related but distinct cognitive phenomena.

Table 1: Risk, loss, and ambiguity aversion.

Concept Psychological Mechanism Cybersecurity Example

Risk aversion Preference for a certain outcome
over a gamble with equal or higher
expected value.

Choosing a reliable exploit
with a 90% success rate for
moderate gain over a novel
exploit with a 50% success
rate for a much higher gain.

Loss aversion Weighing potential losses more
heavily than equivalent gains.

Refusing to use a noisy but
effective exploit that risks
revealing an established
foothold (losing access),
even if the potential gain is
significant.

Ambiguity
aversion

Preference for an option with
known probabilities over one with
unknown probabilities.

Choosing to attack a
standard, well-documented
software service over a
custom, in-house
application with unknown
security configurations.

METHODOLOGY

Our methodology provides an end-to-end pipeline for inferring the latent
cognitive trait of ambiguity aversion from raw, human-generated behavioral
data. This process is composed of three distinct but interconnected stages:
(1) leveraging a high-fidelity experimental dataset as a foundation, (2) using a
large language model to translate unstructured data into a structured format,
and (3) applying a theory-driven computational model to infer the cognitive
bias. This modular architecture represents a generalizable template for a new
class of cognitive security sensors.

The GAMBiT Experiments

The empirical grounding for our methodology is the rich, multi-modal
dataset generated by the Guarding Against Malicious Biased Threats
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(GAMBiT) project (Beltz et al., 2025). These experiments were designed
to capture attacker decision-making with high ecological validity. The
experimental setup involved a series of human-subjects red-team exercises
conducted in a realistic enterprise cyber range provisioned on the SimSpace
Cyber Force Platform. Each participant was placed in an isolated network
environment comprising approximately 40 virtual hosts populated with
representative business services and background user traffic.

Over the course of two 8-hour sessions, participants (N = 19–20 per
experiment) were tasked with pursuing broad operational objectives, such
as network infiltration, privilege escalation, and data exfiltration. A critical
data modality for our work is the collection of detailed, timestamped
operation notes. In these free-text logs, participants documented their
thought processes, tactical decisions, tool usage, and justifications for their
actions, providing a window into their real-time decision-making calculus.

Crucially, the GAMBIT experimental design incorporated both control
and experimental conditions. Experiment 2 served as a control, with
participants operating in a baseline environment. Experiments 1 and 3
introduced a suite of “cognitive triggers:” deceptive artifacts, misleading files,
and risky shortcuts designed to elicit and measure specific biases, including
loss aversion and confirmation bias. This experimental structure provides a
valuable pathway for the validation of our ambiguity aversion model against
ground-truth behavioral data linked to specific cognitive stimuli.

LLM-Powered Behavioral Annotation

The second stage of our pipeline addresses the fundamental challenge of
transforming the raw, unstructured operation notes (i.e., OpNotes) and
NetFlow log files (via Suricata) into a structured time-series of attacker
actions suitable for computational analysis. OpNotes are simply notes
kept by study participants of their efforts. These are similar in nature to
documented note taking of attackers. Suricata is a powerful, open-source
Network Intrusion Detection and Prevention System (NIDS/NIPS) that uses
deep packet inspection to analyze network traffic, identify and block threats,
log activities, and capture files (OISF, 2025). This process is based on the
LLM-based annotation pipeline developed by Hans et al. (2025) and used
in other annotation pipelines (Kim et al., 2025). It leverages the advanced
reasoning capabilities of large language models to act as a universal translator
for human behavioral data.

PsychSim Framework and the Computational Model of Ambiguity
Aversion

The final stage of the pipeline is a specialized computational model
implemented within the Gambit PsychSim framework, a multi-agent system
designed to infer and exploit cognitive biases. This framework models two
primary agents: an Attacker and a Defender. The Defender’s objective is
to form a mental model of the Attacker by observing their actions and
using those observations to infer cognitive biases that can be subsequently
exploited. The underlying agent technology in PsychSim is a form of Partially
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Observable Markov Decision Process (POMDP), which provides agents
with an observation function, a reward function, and the capacity for
sequential decision-making to maximize expected utility (Marsella et al.,
2004; Pynadath and Marsella, 2005). Critically, PsychSim enables Theory of
Mind (ToM) reasoning through recursive modeling, allowing the Defender
agent to possess and update embedded models of the Attacker.

As part of the GAMBiT project, the PsychSim agent has been used to fit five
models of cognitive biases: sunk cost fallacy, base rate neglect, confirmation
bias, the availability heuristic, and loss aversion (Hirschmann et al., 2025).
It models sunk cost fallacy by updating based on repeated target engagement
and estimated future value. The implementation considers host value,
difficulty, and investment already made (Kleinberg et al., 2021). Base rate
neglect is treated as the ignoring or under-weighting the prior probability
(base rate) and over-weighing new evidence (Bar-Hillel, 1980). The agent
observes actions aligned with confirmation bias when the attacker persists
with an exploit despite accumulating evidence of its poor success rate
relative to their initial expectations (Wason, 1960). To model the availability
heuristic, the agent uses a lexical analysis that seeks to assess whether
the attacker targets account names that suggest administrative privileges,
with higher scores for “admin” or “room” compared to personal names.
This assumes attackers’ perceptions are affected by what is familiar and
expected (Yuill, Denning, and Feer, 2007). Finally, the agent takes a simplified
approach and models loss aversion as preferring less risky actions, such as
avoiding actions that have a high risk of discovery (Ert an Erev, 2013).

Our computational model for ambiguity aversion serves as a heuristic
update rule within this observation-driven process. The model’s core logic
is grounded in the comparative ignorance hypothesis (Fox and Tversky,
1995), which posits that ambiguity aversion is most pronounced when
a decision-maker must directly compare a vague prospect with a clearer
one. Accordingly, our model activates its inferential logic primarily in high-
uncertainty scenarios where the attacker faces a choice between a familiar,
safer action and a less familiar, ambiguous alternative. The contrast between
these states of knowledge is what reveals the underlying bias.

Following the comparative foundation for ambiguity aversion proposed
by Ghirardato and Marinacci (2002), our model operationalizes this bias by
treating Subjective Expected Utility (SEU) as the benchmark for ambiguity-
neutral behavior. The model’s score represents a quantifiable measure of
the attacker’s deviation from this SEU baseline. An action is classified as
ambiguity-averse if the attacker, when faced with significant uncertainty,
chooses a safer option over a potentially higher-reward but more ambiguous
alternative—a pattern inconsistent with SEU maximization.

To quantify this crucial element of uncertainty, the model employs a
set of behavioral heuristics. Rather than assuming a known probability
distribution, as the current instantiation of the loss aversion model used in
the GAMBiT project, it estimates the degree of ambiguity by considering
factors that reflect the attacker’s relative ignorance or lack of competence
regarding an action. These factors include the novelty of the action or target,
the inherent complexity of the technique being employed, and the historical
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variance in the action’s success rate. A high score on these dimensions suggests
a state of Knightian uncertainty, where the attacker cannot reliably assess
the probability of success. The model also identifies more sophisticated
behavioral signatures, such as hedging as an indicator of an attempt to
manage ambiguity. By grounding its heuristics in established theories of
decision-making under ambiguity, the model provides a transparent and
interpretable method for inferring a latent cognitive trait from observable
behavior.

RESULTS

To evaluate our ambiguity aversion model, we ran it on the behavioral
data from the GAMBIT experiments, generating probability estimates for
each participant’s actions (1583 observations from 29 participants). We
then conducted an exploratory analysis comparing these estimates to those
produced by the established loss aversion model developed within the
GAMBiT project (Beltz et al., 2025).

First, we compared the overall distribution of trait probabilities generated
by each model. As shown in Table 2 and the density plot in Figure 1, the loss
aversion model tended to assign higher probabilities across all observations.
A Wilcoxon signed-rank test confirmed this visual finding, indicating that
the probabilities from the loss aversion model were significantly higher than
those from the ambiguity aversion model (W = 450097, p <.001).

Figure 1: Density plot displaying the distribution of trait probability estimates by
model.

Table 2: Trait probability by model.

Model Mean (SD) Trait
Probability

Median Trait
Probability

Percentage of
Probabilities > 0.5

Ambiguity aversion 0.212 (0.196) 0.091 15.0%
Loss aversion 0.439 (0.075) 0.478 0.0%
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Next, we examined the models’ ability to generate high-confidence signals.
While the loss aversion model produced higher mean probabilities, the
ambiguity aversion model generated a greater number of high-confidence
observations, defined as a probability greater than 0.5. The ambiguity
aversion model yielded 237 high-confidence observations, compared to 0
from the loss aversion model (14.97% vs. 0%; ξ2(0) = 254.02, p <.001).
This suggests that while the loss aversion model is more broadly applied, our
ambiguity aversion model provides more decisive and confident estimates
when it detects the relevant behavioral signals.

Figure 2: Mean trait probability by MITRE ATT&CK Technique across each model.

Finally, we analyzed how the inferred trait probabilities varied across
different MITRE ATT&CK tactics (see Figure 2). The loss aversion model
assigned the highest average probabilities to actions associated with Lateral
Movement tactics. In contrast, the ambiguity aversion model’s highest
probabilities were linked to Discovery tactics. This divergence suggests that
the two models are capturing distinct behavioral drivers that manifest at
different stages of a cyberattack, with loss aversion being more prominent
during evasion, and ambiguity aversion being more influential during initial
reconnaissance and action execution.

DISCUSSION

The initial finding that loss aversion explains more behavioral variance than
ambiguity aversion is, we believe, a direct consequence of the experimental
environment’s design. Our central hypothesis is that the simulated cyber
range, while ecologically valid in many respects, did not instantiate a
sufficiently high risk associated with ambiguity. In the context of the
GAMBIT experiments, the negative outcomes of choosing an ambiguous,
high-uncertainty path—such as a failed exploit or time spent on a dead
end—lacked significant weight. There was no tangible penalty equivalent to
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“getting caught”or losing a persistent foothold, which are the primary drivers
that would make an attacker ambiguity-averse. Consequently, the more
immediate and salient concern for participants was likely the preservation
of existing access, a behavior directly captured by loss aversion models. This
is particularly true of the GAMBiT PsychSim model, which primarily models
risk aversion.

It is also critical to acknowledge the preliminary nature of this work. The
cognitive models for both ambiguity and loss aversion require substantial
training on larger datasets to be properly calibrated. The current parameter
space for our ambiguity aversion model was largely exploratory, established
without strong guiding principles from prior empirical data. With more data,
these values can be systematically set and validated.

Furthermore, true validation of these cognitive models will require
a dynamic, interactive environment. A definitive test of whether the
parameterization is correct can only occur when a defensive agent, guided by
the model’s inferences, attempts to actively manipulate an attacker’s biases
and observes the resulting behavioral change.

CONCLUSION AND FUTURE WORK

This paper has presented a novel, complete, and empirically grounded
methodology for detecting and quantifying ambiguity aversion in
cyberattacker behavior. We have advanced the argument that, within
the context of sophisticated cyber operations characterized by Knightian
uncertainty, ambiguity aversion is a theoretically sound and ecologically
valid construct. We detailed a three-stage pipeline that transforms raw,
unstructured human behavioral data into a real-time inference about a latent
cognitive trait. While our preliminary analysis shows that a standard loss
aversion model currently offers greater explanatory power, we posit this is an
artifact of the experimental conditions rather than a fundamental refutation
of ambiguity aversion’s role in cyber operations.

Future Work

This research opens several promising avenues for future work:

• Experiment Design for Ambiguity: The most critical direction for future
work is the design and execution of a new human-subjects experiment
where the risk of ambiguity is made explicit and consequential. This
experiment must incorporate a tangible risk of “getting caught,” such as
a high probability of being detected and ejected from the network upon
failing an exploit on an ambiguous, unknown system. This will create
the necessary conditions to properly elicit and measure ambiguity-averse
behavior.

• Model Training and Calibration: Both the ambiguity and loss aversion
models must be formally trained and validated. This involves collecting
more extensive behavioral data to establish robust guiding principles for
the parameter space, moving beyond the current exploratory settings.
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• Interactive Validation: The ultimate validation of this framework lies in
its application. Future work should focus on integrating these cognitive
sensors into an interactive defensive agent. This agent would use the
inferred biases to deploy cognitive triggers and measure the subsequent
change in attacker behavior, thereby closing the loop and confirming the
model’s predictive and manipulative utility.
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