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ABSTRACT

The construction industry is among the most hazardous sectors, with frequent serious
injuries and fatalities. This study investigates the key factors contributing to fatal
accidents and explores how safety-assistive vehicles—currently limited to basic alarm
and control functions—can be advanced into comprehensive safety management
tools. Utilizing Korea’s national accident database (CSI) from 2019 to 2023, we analyzed
15,807 cases, including 807 fatal incidents (5.1%). Predictive models employing
CatBoost and AdaBoost yielded strong performance (AUC: CatBoost 0.912; AdaBoost
0.908). SHAP analysis identified top predictors of fatality: falls, worker negligence,
hazardous objects, small-scale sites (<20 workers), and high-value projects (>$76.9M).
Our results indicate that integrating predictive analytics may enable safety-assistive
vehicles to go beyond alarms, facilitating real-time detection of accident risks,
hazardous zones, and unsafe behaviors. This proactive capability can enhance safety
management at construction sites. The study demonstrates the practical utility of
machine learning for identifying high-risk conditions and guiding the development
of smarter safety-assistive systems. Future research will focus on applying computer
vision and detection technologies to further improve real-time accuracy.

Keywords: Construction safety, Accident analysis, Machine learning, Catboost, AdaBoost,
SHAP

INTRODUCTION

According to the 2023 Industrial Accident Analysis Report released by
the Ministry of Employment and Labor of Korea, the industrial accident
rate in the construction sector—measured as the number of injuries per
1,000 workers—increased steadily from 7.28‰ in 2014 to 14.49‰ in 2023.
Additionally, construction accounted for 44% of all occupational fatalities,
which is approximately 2.15 times higher than that of the manufacturing
industry, the sector with the second-highest rate.

Among all industrial sectors in Korea, construction accidents account for
the highest number of serious industrial disasters, raising public concern and
imposing a substantial socioeconomic burden (Cho, 2017). To address this
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issue, the Korean government enacted the Serious Accidents Punishment Act
in 2022 to strengthen national-level supervision and preventive management
of major incidents. In line with this initiative, the Ministry of Trade, Industry,
and Energy (MOTIE) has launched a project worth approximately USD 17
million since 2022 to develop a Zero-Risk Platform for Commercial Special-
Purpose Vehicles. This platform aims to enhance on-site safety by enabling
Safety-Assistive Vehicles and edge-based control systems to detect hazards
and monitor surrounding environments in real time at construction sites.

This study aims to identify the key factors contributing to accidents
and to provide baseline data for developing safety policies applicable to
Safety-Assistive Vehicles. Construction accident data were obtained from
the Construction Safety Management Integrated Information (CSI) system,
operated by the Ministry of Land, Infrastructure, and Transport of Korea.
Based on these data, a methodological framework is proposed that integrates
machine learning and explainable artificial intelligence (XAI) to determine
the causal factors of fatal construction accidents.

LITERATURE REVIEW

Numerous studies have quantitatively analyzed industrial accidents and fatal
incidents at construction sites. Choi (2023) utilized construction accident
data from 2019 to 2023 and applied Decision Tree, Random Forest,
XGBoost, and SHAP (Shapley Additive exPlanations) analyses to identify
the primary causal factors of fatal accidents, including falls, collapses, and
incident involving heavy equipment. Park (2025) conducted a statistical
analysis of construction site accident data from 2020 to 2022, examining
the overall status and issues related to construction accidents and proposing
improvement measures. Xu (2021) analyzed fatal accident data from China’s
construction industry (2010–2019) and developed a Grey Model (GM)
prediction framework to identify key accident causes, as well as the days
and seasons with the highest frequency of fatalities.

Meanwhile, beyond the construction sector, various machine-learning-
based studies have been conducted in the general industrial and
transportation domains to predict accidents and analyze influencing factors.
Yang (2025) analyzed personal mobility (PM) traffic accident data in Korea
from 2017 to 2022 using Random Forest and SHAP techniques to identify
factors influencing accident severity. Yao (2023) employed satellite imagery
(SBAS-InSAR) from the Lishui region in southern China to predict landslide
susceptibility using the CatBoost model, providing a technical foundation
for disaster prevention and management. Dong (2022) utilized N-5 highway
traffic accident data from Pakistan (2015–2019) to compare NGBoost,
LightGBM, AdaBoost, and CatBoost models, identifying key variables
influencing fatal accident severity—such as driver age, accident type, and
cause—through SHAP interpretation.

These prior studies collectively demonstrate the effectiveness of data-
driven approaches in identifying the causal factors of accidents and highlight
the increasing use of explainable artificial intelligence (XAI) techniques to
enhance interpretability and reliability in predicting fatal accidents. Building
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on this research trend, the present study integrates a boosting-based machine
learning model with SHAP analysis applied to fatal construction accident
data to derive essential insights for developing hazard perception algorithms
and safety decision-support models for Safety-Assistive Vehicles.

ANALYTICAL METHODS

Data Collection and Preprocessing

For this study, construction accident data from the CSI system were utilized,
covering the period from July 2019 to December 2023. From the 51 variables
available in the CSI database, eight key factors were selected to support
the development of safety policies for Safety-Assistive Vehicles: Number of
fatalities, Accident type, Construction type, Accident object, Work process,
Accident cause, Construction cost, and Number of workers. Only cases
classified as building or civil engineering were analyzed, reflecting the
anticipated operating environment of the vehicle. The final dataset comprised
15,807 cases (15,000 non-fatal and 807 fatal). The dependent variable was
the number of fatalities, coded as 1 for fatal and 0 for non-fatal accidents. All
categorical variables were one-hot encoded for machine-learning analysis.

Table 1: Summary of the structure of the construction site accident dataset.

Variable Type of Data Feature

Number of fatalities Categorical (2) 1: fatal, 0: non-fatal
Accident type Categorical (12) Fall, Slip, Struck by Object, Caught

in/between, Collision, etc.
Construction type
(major category)

Categorical (2) Building, Civil engineering

Accident object (major
category)

Categorical (8) Temporary Structure, Construction
material, equipment, Construction tools,
etc.

Work process Categorical (53) Installation, Dismantling, Transportation,
Maintenance, Cleanup, etc.

Accident cause Categorical (54) Worker Negligence, Unsafe Behavior,
Poor Control, Violation of Work, etc.

Construction cost Categorical (18) Less than USD 7.7 million, USD 7.7-15.4
million, and up to more than USD 76.9
million

Number of workers Categorical (6) Fewer than 20 workers, 20 – 49 workers,
and up to more than 500 workers.

Data Analysis

The analytical framework of this study is illustrated in Figure 1. After
preprocessing missing and outlier values, two boosting-based ensemble
algorithms—AdaBoost and CatBoost—were applied to classify fatal and non-
fatal accidents. AdaBoost combines weak learners throughweighted voting to
enhance classification accuracy (Wang, 2019; Kim, 2009), whereas CatBoost
is an ordered boosting method optimized for categorical variables and
resistant to overfitting (Prokhorenkova, 2017).Model hyperparameters were
tuned using k-fold cross-validation, and performance was evaluated based on
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Recall and ROC-AUCmetrics, with an emphasis on accurately detecting fatal
accidents to inform the development of Safety-Assistive Vehicle policies.

Figure 1: Framework of boosting-based ensemble learning models and SHAP analysis
process.

The selected model was further analyzed using SHAP to quantify each
feature’s contribution to the probability of fatality. Based on cooperative
game theory, SHAP determines both the magnitude and direction of each
variable’s impact on model’s output (Lundberg, 2017; Choi, 2023).

RESULTS

Hyperparameter Tuning

The dataset was randomly divided into training (70%) and testing (30%) sets.
Optimal hyperparameters were determined using Bayesian Optimization,
which efficiently identifies parameter combinations that maximize an
objective function by updating the search space based on prior evaluations
(Bergstra, 2011; Xia, 2017). This approach enhances generalization by
balancing bias and variance while preventing overfitting. The area under
the curve(AUC) value was used as the optimization criterion, implemented
through the Optuna framework in Python. The final hyperparameter settings
for each model are summarized in Table 2.

Table 2: Hyperparameters tuning of boosting-based ensemble models.

Algorithm Evaluation
Metric

HyperParameters Range Optimal
Values

AdaBoost Classification
accuracy

N_estimators
Learning_rate

(100, 5000)
(0.01, 1)

437
0.167

CatBoost Classification
accuracy

N_estimators
Max_depth
Learning_rate

(100, 5000)
(0, 10)
(0.001, 1)

3776 7
0.029
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Selecting the Optimal Model

Model performance was evaluated using Recall and ROC-AUC to assess both
detection accuracy and overall classification capability for fatal accidents.
Recall is calculated as shown in Equation (1):

Recall =
TP

TP + FN
(1)

represents the ratio of correctly identified fatal accidents, where TP (True
Positive) and FN (False Negative) denote true positive and false negative
predictions, respectively.

The ROC-AUC measures classification performance across all thresholds
and is calculated as shown in Equation (2). Its values range from 0.5 to 1.0,
with higher values indicating better discriminatory ability.

AUC =

∫ 1

0
TPR (FPR)dFPR (2)

By applying the optimized hyperparameters, both the AdaBoost and
CatBoost models were executed, and the results are presented in Figure 2
and Figure 3, respectively.

Figure 2: Results of the AdaBoost analysis.

Figure 3: Results of the CatBoost analysis.

CatBoost achieved superior results, with a Recall of 0.880 (26% higher
than AdaBoost’s 0.620) and a slightly higher ROC-AUC (0.912 vs. 0.908),
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confirming its stronger capability in detecting fatal accidents. Consequently,
CatBoost, combining high recall with stable discrimination, was selected as
the final model for safety management applications.

Variable Importance Analysis Using SHAP

The influence of each variable in the CatBoost model, interpreted through
SHAP values, is illustrated in Figure 4. The variable with the greatest impact
on the occurrence of fatal accidents at construction sites was “Accident
type: Slip”, followed by “Accident type: Fall,” “Accident cause: Worker
negligence,” “Number of workers: Fewer than 20 workers,” and “Accident
object: Construction machinery.”

Figure 5 presents the SHAP summary plot, illustrating both the magnitude
and direction of each variable’s impact on the probability of a fatal accident.
Red dots represent the presence of a fatal accident type (value= 1), while blue
dots indicate its absence (value = 0). The results reveal that “Accident type:
Fall” positively contributes to fatality risk, whereas “Accident type: Slip” has
a negative effect, suggesting that slip incidents are more likely to result in
non-fatal injuries.

Figure 4: SHAP bar plot illustrating the absolute mean impact of each variable.

Overall, “Fall,” “Fewer than 20 workers,” “Construction machinery,”
and “Collapse” were identified as key factors that increase the likelihood
of fatal accidents. Conversely, accidents occurring at sites with fewer than
300 workers or with construction costs between USD 11.5–15.4 million
and above USD 38.5 million were more often non-fatal. These findings
underscore the need for scale-specific safety strategies for Safety-Assistive
Vehicles.
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Figure 5: SHAP summary plot illustrating the distribution and directional influence of
each variable.

CONCLUSION

This study quantitatively analyzed the causal factors of fatal construction
accidents to provide foundational insights for tdesigning safety policies
involving Safety-Assistive Vehicles, which are capable of real-time hazard
detection and prevention. Using accident data from the CSI system, AdaBoost
and CatBoost models were developed, and evaluation metrics such as
Recall and ROC-AUC confirmed that CatBoost demonstrated superior
performance.

SHAP analysis identified key contributors to fatal accidents, including sites
with fewer than 20 workers, falls, collapses, and construction machinery. In
contrast, slips and worker negligence were associated with lower severity
but higher frequency. Accident patterns varied according to project scale:
sites with fewer than 300 workers or construction costs between USD
11.5–15.4 million and above USD 38.5 million were more susceptible to
non-fatal injuries. Based on these findings, site-specific safety strategies for
Safety-Assistive Vehicles are proposed:

(1) Small-scale sites (fewer than 20 workers): integrate fall and collapse
detection into real-time risk scoring and alert systems.

(2) Medium-to-large sites (fewer than 300 workers or mid- to high-cost
projects): implement congestion monitoring and route optimization to
prevent frequent but less severe injuries.

(3) Risk visualization: utilize vehicle-collected data to generate zone-level
hazard maps for workers and managers.

Overall, the identified risk factors provide a foundation for differentiated,
scale-adaptive safety policies. Future research will integrate SHAP-based
eXplainable AI (XAI) with Edge-AI control systems to enable autonomous
warning and avoidance functions for Safety-Assistive Vehicles in real
construction environments.
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