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ABSTRACT

When a large-scale disaster occurs, staff of the affected municipality (the recipient
municipality) are required to handle responses such as operating evacuation centers
and managing supply logistics in addition to their regular duties. This significantly
increases their workload. Therefore, other municipalities dispatch support staff to the
recipient municipality. However, once their dispatch period is over, these support staff
return to their home municipalities. As a result, the disaster relief know-how that
support staff gain from their onsite response is not accumulated within the recipient
municipality. This loss of know-how is a critical issue. Therefore, we concluded that it
is crucial to systematize the challenges and solutions that support staff encounter in
the immediate aftermath of a disaster during their dispatch period. Furthermore, we
believe that if other support staff can utilize this knowledge, they will be able to more
effectively support the decision-making of recipient municipalities in future disasters.
For this study, we applied a qualitative data analysis method to the findings of the
“Support Staff Interview Project,” which was conducted by the Institute of Social Safety
Science after the 2024 Noto Peninsula Earthquake in Japan. Through this analysis,
the study attempted to structure the difficulties faced by dispatched staff and the
knowledge needed to overcome them.

Keywords: Disaster response, Knowledge structuring, Mandala format, Decision-making,
Dispatched personnel

INTRODUCTION

The Noto Peninsula Earthquake in Japan, which occurred on the evening of
New Year’s Day, January 1, 2024, caused extensive damage across various
areas, including Ishikawa Prefecture. A significant challenge in the immediate
aftermathwas that severe damage to roads and infrastructuremade it difficult
for many municipal employees to physically reach the municipal government
office. As a result, the initial disaster response had to be handled by the very
limited number of staff who were able to assemble, placing an enormous
strain and an overwhelming workload on these individuals.

These types of initial challenges, particularly the immense burden placed
on the first responders available, are common in large-scale disasters.
Previous studies have highlighted the difficulties that affected municipalities
face. For example, in the 2016 Kumamoto Earthquake in Japan, the delayed
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assembly of staff and an unusable government building also led to a situation
where a limited number of personnel had to manage an excessive workload,
creating challenges in municipal support, shelter management, and supply
transportation (Kakimoto & Kurohiji, 2019).

Learning from the lessons of past large-scale disasters, many municipalities
and companies regularly train and educate their staff in disaster response.
However, these efforts face a fundamental limitation: large-scale disasters do
not occur frequently in the same area, meaning that experiential knowledge is
difficult to retain and pass down effectively over long cycles. Consequently,
even with training, a fully prepared team is often impossible to assemble
in the right positions immediately after a disaster. This highlights the
critical challenge: how to enable the personnel who are actually available
at that moment—regardless of their experience—to respond with maximum
efficiency. Simply passing down lessons is not enough; a more structured and
systematic approach, grounded in research, is required.

Furthermore, disaster response has been researched to prepare for such
situations. This research has progressed from two main perspectives:
“knowledge accumulation and sharing” and “streamlining response
operations and problem-solving.”

The first perspective, “knowledge accumulation and sharing,” focuses
on learning from past disasters. One stream of this research documents
the practical measures and ingenuity of experienced responders (Tomosho
et al., 2014; Arita et al., 2016). Another crucial stream involves analyzing
failures to understand their root causes, for which various frameworks
and databases have been developed (Hatamura, 2005; Nakao, 2008).
Among these approaches, this study specifically builds upon the structured
framework provided by Hatamura’s (2005) Failure Mandala.

The second perspective, “streamlining response operations and problem-
solving,” aims to support concrete activities at disaster sites. Efforts here
include developing methods for assessing workload and optimizing personnel
allocation (Inaba et al., 2015; Inoue et al., 2018) and using tools like the KJ
Method, a qualitative data analysis method for organizing ideas, to identify
and solve broad societal challenges post-disaster (Ohara et al., 2011).

However, a significant gap exists between these two perspectives.
While a vast amount of knowledge has been accumulated, particularly
through sophisticated failure analysis like the Failure Mandala, research
on structuring this knowledge into a practical format that “anyone can
utilize quickly and easily” amid the chaos of a disaster remains insufficient.
Foundational research has been conducted to structure knowledge into
“mandala-style” models for decision support (Fukuta et al., 2024; Fukuta
& Gokon, 2025), but these efforts have not yet reached the stage of ensuring
reliability and accuracy through analysis frommultiple perspectives. A highly
accurate and versatile system has not yet been established that allows even
inexperienced staff to immediately apply deep knowledge in the field.

To address this gap, our study aims to construct amore accurate and robust
mandala model. By building on existing methods and incorporating analysis
from multiple perspectives, we seek to develop a new system that serves as a
methodological bridge between deep knowledge accumulation and practical
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problem-solving. The ultimate goal is to establish a tool that supports rapid
situational comprehension and informed decision-making for any responder,
regardless of their experience level.

THE RESEARCH IMPLEMENTATION PROCESS

This study utilizes the results of a specific survey as qualitative data. These
results are from the “Interview Project with Municipal Support Staff,”which
was conducted by the Special Committee on the 2024 Noto Peninsula
Earthquake of the Institute of Social Safety Science (ISSS). This study analyses
these survey results using qualitative data analysis methods. The objective
is to extract and structure knowledge to facilitate a smooth initial response
during disasters.

The data used consists of the results from an interview survey of
37 municipal support staff members. The survey contained 19 items,
which included topics such as past disaster response experience, assigned
missions, and the overall picture of the disaster response (see Table 1). This
study systematically analyzed interview results to synthesize the common
experiences of support staff into comprehensive concepts.

Table 1: Institute of Social Safety Science (ISSS): List of interview survey items.

No. Survey / Interview Items

1 Number of past disaster response experiences

2 Experience in training (at or above drill participation level)

3 Mission
4 Personal key factors for building trust with the affected municipality
5 Response status of the local government office
6 Procurement and supply of goods
7 Consolidation of information, including damage reports
8 Understanding the overall picture and roadmap of the disaster response
9 Staff assembly status
10 Clarification of supporters’ roles and the chain of command
11 Reorganization of the Disaster Response Headquarters
12 The organization’s BCP and reallocation of human resources
13 Support for evacuation shelters and evacuee life
14 Building damage assessment, roads, water (incl. sewage), identifying and

supporting vulnerable persons sheltering at home, acceptance of volunteers
(NPOs), setup and operation of consultation services, and waste disposal

15 Coordination of dispatched personnel
16 Handover from the Chief Support Coordinator
17 Handover from the General Support Team to the affected municipality
18 Onsite living conditions (base camp)
19 Applying lessons learned back to one’s own municipality

Our analysis followed a multi-step hybrid approach. The process began
with a deductive analysis using Hatamura’s (2005) Failure Mandala as an
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initial framework, which was then supplemented with an inductive analysis
to capture emergent themes from the data.

Building on this foundational analysis of causes, we developed two
complementary models: a causal loop diagram based on systems thinking
(Minato, 2016) to illustrate the systemic feedback structures, and a mandala-
style knowledge model to provide a comprehensive, practical map for
practitioners. Finally, we performed a quantitative text mining analysis to
validate our qualitative models.

ANALYSIS OF INTERVIEW RESULTS

The analysis followed a hybrid deductive-inductive process. First, to analyze
the causes of delays in the initial disaster response, a deductive approach was
used.

We applied codes from Failure Mandala (Hatamura, 2005) as an initial
analytical framework to categorize the interview data. This allowed us to
systematically sort the data in accordance with established failure patterns.

However, any data that did not fit within this pre-existing framework was
subsequently analyzed using an inductive approach. Through open coding,
we generated new, emergent categories directly from the data itself. The
synthesized results of these analyses are presented below (see Table 2). For
clarity, categories from the original framework (Hatamura, 2005) where no
corresponding data was found (i.e., a code count of zero) have been omitted
from Table 2. Categories marked with an asterisk (*) were classified on the
basis of the initial deductive framework, while those marked with a dagger (†)
were newly generated through our inductive analysis. This approach allowed
us to leverage an existing theoretical model while also capturing the unique,
context-specific aspects of the Noto Peninsula Earthquake case.

Building upon this foundational analysis of causes, we then re-examined
our findings from a solution-oriented perspective. The themes and categories
in Table 2 were reviewed and re-organized to derive actionable strategies for
streamlining the disaster response. This re-categorization focuses on practical
countermeasures and improvements from a practitioner’s standpoint (see
Table 3).

Table 2: Analysis of causes for delayed initial response.

Locus of
Responsibility

Core Factors Detailed Cause Code Count

Causes
attributable to
individuals*

Ignorance* Lack of experience† 22

Lack of knowledge/ skills† 19

Unexpected
causes*

Unknown* Occurrence of abnormal
events*

Occurrence of unknown
events*

Continued
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Table 2: Continued

Locus of
Responsibility

Core Factors Detailed Cause Code Count

Causes
attributable to
the
organization*

Poor response to
issues†

Poor organizational
structure*

68

Poor information sharing† 60
Differences in
values†

Lack of understanding of
the disaster area†

15

Poor organizational
culture*

8

Poor safety awareness*

Poor
management†

Poor operations* 17

Poor
administration/control*

7

Poor staffing / personnel
issues†

23

Causes not
attributable to
either
individuals or
the
organization*

Poor response to
uncertainty/
Indeterminacy†

Impassable roads† 3

Being a victim of the
disaster oneself†

7

Note. This framework integrates categories derived from both deductive and inductive analyses.
* These categories were primarily classified based on the deductive framework (Hatamura, 2005).
† These categories were primarily generated through inductive analysis of case data.

Table 3: Results of analysis: Categories and subcategories.

Stakeholder Category Subcategory Code Count

Common to all
disaster response
stakeholders

Support from
assisting
municipalities

Resolve staff shortages for
tasks

122

Provide disaster response
know-how and expertise

72

Utilize the know-how of
the dispatching
municipality

31

Roadmap Gain common
understanding among
stakeholders

12

Choose indicators for
disaster response progress

9

Grasp the overall picture of
the disaster response

3

Continued
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Table 3: Continued

Stakeholder Category Subcategory Code Count

Response to
changing
situations

Respond in accordance
with onsite situation
changes

5

Establishing a
platform

Strengthen
inter-organizational
collaboration

38

Share information
inter-organizationally

121

Decide policies swiftly 38
Organizational
structuring

Adjust personnel allocation 96

Eliminate the negative
effects of organizational
silos

38

Information
consolidation
and sharing

Consolidate damage
information

7

Identify isolated
communities

15

Visualize information 55
Affected/Recipient
municipality

Communicating
support needs

Become able to obtain
necessary support

20

Reduce the burden on staff 5

Subcategories with higher code counts were interpreted as themes of
greater importance to the responding support staff. For instance, the
subcategory with the highest code count (122) pertained to “reducing the
burden on affected municipal staff,” while the next highest (121) related to
“improving efficiency by establishing a forum to share operational challenges
in addition to providing support.” Nevertheless, the analysis did not rely
solely on code frequency; opinions judged by the researchers to be significant
were retained as analytical categories, regardless of their code count.

MODELING THE CAUSAL STRUCTURE OF THE INITIAL RESPONSE

Having identified the fundamental causes of delay through our hybrid
analysis (see Table 2), our next objective was to understand how these
individual causes are interconnected and create feedback loops that impede
the initial response.

To achieve this, we first selected the key stakeholders (“Affected
Municipality,” “Assisting Municipality”) and the most critical causal factors
from Table 2 (e.g., ‘Poor Staffing/Personnel Issues,’ ‘Poor Information
Sharing,’ ‘Roads are Impassable’). These factors were then organized into a
narrative sequence that illustrates the chain of events: Problem, its underlying
Cause, and the attempted Solution (see Table 4).
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Table 4: Results of analysis: Categories and subcategories.

Event Stakeholder Action Problem Cause Solution

Earthquake
occurs on
New Year’s
Day

Affected
municipality

Initial
response

- Staff can’t
assemble

- Heavy
workload
per person

- Slow
response

- Staff are
victims

- Staff are on
leave

- Family care
duties

- Roads are
blocked

Reduce
workload
by getting
support
staff

Assisting
Municipality

Staff
dispatch

- Can’t grasp
local needs

- Difficult to
provide best
support

- Local staff
are too busy
to assess the
full
situation

Support re-
establishing
the local
Disaster
Response
HQ

This causal narrative then formed the direct basis for the causal
loop diagram (see Figure 1). In this diagram, the arrows indicate causal
relationships, forming two primary feedback loops: a red loop illustrating the
vicious cycle within the Affected Municipality, and a blue loop representing
the intervention by the Assisting Municipality. The analysis of this diagram
makes it clear that the primary challenge for a swift initial response is,
first and foremost, securing the necessary personnel to carry out response
operations.

Figure 1: Causal diagram of stakeholder interactions in disaster response.
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THE DISASTER RESPONSE EFFICIENCY MANDALA

Causal loop diagrams are well-suited for capturing the overall disaster
response as a system, as they can incorporate aspects that are not purely
logical. However, each step in such a diagram inherently contains elements
that are not fully captured.

To address this limitation, we have restructured the knowledge that cannot
be fully represented in the loop diagram into a tree-based model. This tree
structure is designed to organize knowledge on the basis of its causal factors,
particularly for information that is overly complex for a loop diagram.
Furthermore, it functions to link this knowledge to various countermeasures
and improvement strategies.

This research conducted a multi-faceted analysis of the causes and
underlying factors contributing to delays in disaster response. The analytical
process began by positioning a specific cause at the center of a mandala, with
related factors arranged peripherally. Subsequently, a deeper examination of
these factors allowed us to comprehend the overall structure of the failure
and identify concrete countermeasures and improvement strategies.

While the causal loop diagram (Figure 1) illustrates the feedback
mechanisms of the problem, the mandala model was developed to provide
a more comprehensive, hierarchical map of all contributing factors for
practitioners.

Initially, we established the central theme as “how to enhance the efficiency
of disaster response operations.” Surrounding this theme, we positioned the
“categories (causes) required for a rapid response,” as extracted fromTable 2.
These were then organized into a tree structure by linking associated sub-
categories (factors) to each primary category (see Figure 2).

Figure 2: Disaster response efficiency mandala (adapted from Fukuta & Gokon, 2025).
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This diagram illustrates the countermeasures and improvements derived
from the analysis. Note, however, that not all measures proposed herein
were implemented during the actual 2024 Noto Peninsula Earthquake. This
figure represents a proposal developed on the basis of the causes and factors
necessary for a swift initial response, as identified by analyzing interview
data.

CORROBORATING THE MODEL THROUGH QUANTITATIVE
TRIANGULATION

To reinforce the validity of our qualitatively constructed models (the causal
loop diagram and the mandala model), we performed a quantitative text
analysis. This method serves as a form of triangulation, adding a layer of
objective, data-driven evidence to our interpretive findings.

While our qualitative analysis identified key themes on the basis of
their contextual significance, co-occurrence network analysis provides a
purely statistical visualization of the most prominent word relationships in
the entire dataset. A strong alignment between the two suggests that our
interpretations are not only contextually rich but also quantitatively central
to the discourse. This alignment, therefore, strengthens the overall reliability
of our conclusions beyond what either method could achieve alone.

We analyzed the structured model using text mining techniques. The
analytical method adopted was co-occurrence network analysis, which
visualizes the structure of relationships between words by connecting words
that appear together in a text with lines. In the network diagram, words
are represented by nodes (points), and the strength of the co-occurrence
is represented by the thickness of the lines, allowing for the relationships
between vocabulary to be intuitively understood. For this analysis, we used
the text mining tool KH Coder (Higuchi, 2020). All texts were subject to
analysis. Since the text data was in Japanese, the analysis was conducted
in Japanese. The total number of extracted words was 15,458, with 1,907
unique words. The words included in the analysis were limited to those that
appeared 10 or more times.

The following network diagram visualizes the co-occurrence relationships
between frequently occurring words extracted from the collected text data.
This showed a strong association between the disaster response tasks shown
in the model and the tasks actually being performed in the field (see Figure 3).

In the mandala model, key categories (causes) for improving efficiency
were established, such as “Support from assisting municipalities,”
“Information consolidation and sharing,” and “Organizational structuring.”
In this network diagram, strong clusters of words corresponding to
these categories are formed. The largest cluster, centered on “Support,”
shows a dense and strong connection between words like “support,”
“staff,” “dispatch,” “recipient municipality,” “assisting municipality,”
“coordination,” and “operations.” This objectively indicates that “Support
from assisting municipalities,” one of the most critical items in the
mandala model, was the most central and frequently discussed theme
among the interview participants. The cluster centered on the “Disaster
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Response Headquarters” connects words such as “Disaster Response
Headquarters,” “meeting,” “information sharing,” and “report.” This
validates the importance of categories in the mandala model like
“Information consolidation and sharing” and “Establishing a platform.” It
shows that information transmission and decision-making at the core of the
disaster response were discussed as significant challenges.

Figure 3: Text mining analysis results (co-occurrence network).

Additionally, a cluster of words such as “difficult,” “burden,” and
“experience”can be seen in the bottom left of the diagram. This indicates that
the fundamental issues the mandala model aims to solve—specifically, the
“burden on staff” and “difficulties in response due to lack of experience”—
exist as clear topics within the actual text data.

In conclusion, this co-occurrence network analysis can be said to reinforce
the structural validity of the mandala model—which was built through
intuition and interpretation via qualitative analysis—with objective data.

DISCUSSION

On the basis of interviews with support staff during the 2024 Noto Peninsula
Earthquake, this study systematized knowledge for initial disaster response
and proposed it as a mandala-formatted knowledge model. The uniqueness
of this study lies in structuring the fragmented knowledge accumulated from
previous research into a format that “anyone can use quickly and easily,” even
inexperienced personnel in chaotic situations. The proposed mandala model
supports rapid situational assessment and decision-making by intuitively
visualizing the overall picture and causal relationships between challenges
(causes) and countermeasures (factors). Furthermore, a key strength of
this research is that the model, built through qualitative analysis, was
validated using a quantitative method—text mining (co-occurrence network
analysis)—which reinforces the objective validity of its structure. This model
is expected to be utilized as a real-time decision-support tool at disaster
sites and as a practical training material during normal times. However,
the limitations of this study include that it is based on a single case, the
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Noto Peninsula Earthquake, and that the analysis was limited to support
staff. Future work needs to refine the model by incorporating other disaster
cases and the perspectives of various stakeholders, such as staff from affected
municipalities, and to verify its practical effectiveness through disaster drills.

CONCLUSION

This study successfully structured the chaotic knowledge of initial disaster
response into a practical, easy-to-use format. Through a hybrid qualitative
analysis, we identified the core causal structures of response delays
and constructed a mandala-style knowledge model. The validity of this
model was reinforced by quantitative text mining, demonstrating a robust
methodological approach. The resulting model is expected to serve not only
as a decision-support tool during future disasters but also as a practical
training material, ultimately contributing to a more effective and efficient
initial response with limited resources.
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