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ABSTRACT

Cognitive workload monitoring (or real-time inferencing) is crucial for the safe
operation of complex human-machine systems, and motivates the development
of adaptive automation technologies to dynamically assist operators and prevent
both overload and disengagement situations. We systematically reviewed 75 recent
studies (2015–2025) on machine learning-based cognitive workload monitoring and
adaptive systems. The review focused on three key challenges: (1) ground-truth
workload labeling; (2) predictive model generalization across users; and (3) adaptive
automation/interface interventions. Approximately 28% of studies were found to rely
on retrospective self-report workload scales for ground-truth labels, although some
use objective task performance metrics or hybrid labeling approaches. Predictive
models were observed to achieve high accuracy for the same individuals they
were trained on (subject-dependent validation; mean ∼85.6%), but performance
dropped when tested on new users (subject-independent validation; mean∼80.3%). In
general, the majority of studies present offline model development (for asynchronous
classification of workload states) or conceptual system proposals; only 7 studies (9.3%)
implemented and evaluated a real-time closed-loop workload-responsive system with
human participants. These gaps highlight the need for standardized multimodal
workload state labeling methods, cross-user modeling techniques, and empirical
validation of closed-loop workload-adaptive systems in operational settings.

Keywords: Ground truth labeling, Cognitive workload, Predictive modeling, Adaptive
interventions, Human-in-the-loop system

INTRODUCTION

Cognitive workload, the mental effort required to perform a task, is a critical
factor influencing human performance and safety in complex systems. Both
cognitive overload and underload (disengagement) can degrade operator
effectiveness: overload may lead to errors, fatigue, or accidents, while
underload can result in vigilance decrements, task boredom, and delayed
responses (Young and Stanton, 2002; Wickens, 2008; Diarra et al., 2025).
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Maintaining workload within an optimal range is therefore essential for high-
risk domains, such as aviation, driving, air traffic control, and medicine
(Grier et al., 2008). In response, researchers have increasingly focused on real-
time mental workload (MWL) monitoring (i.e., inferencing on states during
task execution) as a basis for adaptively automated systems that dynamically
adjust forms of assistance or task allocations to keep operator workload at
safe, efficient levels (Aricò et al., 2016). Adaptive automation aims to prevent
performance decrements associated with extreme workload by maintaining
task demands within a defined range to avoid both under- and over-load
(Aricò et al., 2016). Achieving such closed-loop human-machine systems
require reliable methods to continuously, objectively, and accurately assess
cognitive workload and trigger task aids without disrupting human operator
performance.

Traditionally, mental workload has been measured via retrospective self-
report scales and post-task questionnaires. The NASA Task Load Index
(NASA-TLX) is likely the most widely used example of a self-report index
that asks operators to rate their perceived workload after completing a
task (Hart and Staveland, 1988). While easy to administer, such subjective
ratings introduce bias and cannot capture moment-to-moment fluctuations
in cognitive load (Wu et al., 2025). Performance-based measures such as
response times and error rates can also indicate workload, but they are
often task-specific and may not generalize across contexts (Wickens, 1992).
In recent years, advances in wearable sensors have enabled more objective,
real-time workload assessment via physiological signals (Charles and Nixon,
2019). Our previous work has demonstrated biosignals such as brain activity
(fNIRS), heart rate and heart rate variability, respiration, and eye metrics
(pupil diameter, blink rate) to be highly sensitive to changes in cognitive
demand and can be monitored continuously and unobtrusively (Liu et al.,
2024a; Liu et al., 2024b; Wen et al., 2025; Grimaldi et al., 2024a; Grimaldi
et al., 2024b; Nadri et al., 2024). A growing body of research applies machine
learning to these multimodal data streams to predict an operator’s cognitive
workload state in real time (Grimaldi et al., 2024b). Recent survey articles
reflect this shift toward objective and multimodal workload monitoring
(Das Chakladar and Roy, 2024; Tao et al., 2019; Debie et al., 2021), noting
that combining multiple modalities (e.g., EEG (electro-encephalography)
with ECG (electro-cardiogram) and eye-tracking) can improve accuracy and
robustness compared to single sensors.

Despite these advances, critical gaps (listed below) remain on the path
to accurately predict cognitive workload and, furthermore, truly achieve
adaptive workload management.

(1) In order to accurately predict workload, there is a need to define ground-
truth workload levels. The human-machine systems field continues to
rely heavily on subjective, post-hoc labeling of workload responses to
train classification models, which are coarse and retrospective (Grimaldi
et al., 2024b). Researchers have experimented with alternative labeling
approaches, such as using task conditions or performance metrics as
objective proxies, and developing hybrid schemes that fuse subjective
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and objective indicators; however, no consensus has been achieved on a
gold-standard labeling method (Tao et al. 2019).

(2) Most reported models have limited generalizability beyond their training
conditions. Many machine-learning classifiers achieve high accuracy for
the same individuals or tasks they were trained on, but performance often
drops substantially when applied to new users or settings (Zhao et al.,
2018; Boring et al., 2020; Debie et al., 2021; Sun and Li, 2025). High
inter-individual variability in physiological responses means models
tend to overfit to the idiosyncrasies of training data. Although some
recent studies have shown improvements in cross-subject robustness by:
(a) training on larger, more diverse datasets to reduce sampling bias;
(b) validating transfer/domain-adaptation methods for cross-subject and
cross-task EEG workload decoding; and (c) using deep subdomain
adaptation to align class-conditional features with class-confusion loss
(Sun and Li, 2025; Ding et al., 2023; Zhou et al., 2023; Luong et al.,
2020; Wang et al. 2022). However, overall model predictive performance
in novel contexts remains a concern (Debie et al., 2021).

(3) The integration of workload prediction into real-time adaptive system
control is largely unachieved. Dozens of papers propose using workload
estimates to trigger adaptive interventions (e.g., adjusting interface
complexity or level of automation), yet only a small subset of research
teams have actually implemented and evaluated such closed-loop systems
with human operators (e.g., Lucchese et al., 2025). The deployment
of adaptive workload-responsive systems in high-stakes domains is
hindered by: (a) ambiguous MWL ground-truth labeling (Safari et al.,
2024; Young et al., 2015); (b) artifact-prone sensing (via physiological
measures) in operational settings (Aksu et al., 2024; Zhou et al.,
2020; Schultze-Kraft et al., 2016; Hajra et al., 2020); (c) weak cross-
subject/task generalization (Sun and Li, 2025; Zhou et al., 2023);
(d) subjective labels and limited continuous ground-truth (Zhou et al.,
2020; Liu Yisi et al., 2017); (e) safety risks from intrusive measurement
approaches and automation false alarms (Zhou et al., 2020); and (f)
a lab-to-field validity gap, including few demonstrations of research
system use in actual applications (Kyle et al., 2025; Ding et al., 2023).

Published reviews have examined specific aspects of cognitive workload,
such as particular sensors or data fusion methods, but none have focused
on the intersection of ground-truth labeling, real-time predictive modeling,
and adaptive (automation) interventions. To address this gap, we conducted
a systematic review of recent research (2015–2025) on cognitive workload
sensing/monitoring, machine learning-based state classification, and human-
in-the-loop system adaptation. In particular, we investigated if (and how)
contemporary systems effectively address these three challenges. We found
75 studies that attempted to establish reliable ground-truth MWL labels,
generalize model-based predictions, and adapt automated assistance based
on predictions. The overarching aim of these studies has been to synthesize
current research trends and guide future efforts toward truly adaptive
cognitive workload management in real-world applications.
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METHODS

Search Method and Study Selection

We followed the PRISMA method to identify relevant studies (Page et al.,
2021). The Web of Science database was searched for the period from January
1, 2015, to July 9, 2025. A keyword strategy, using the Boolean operators,
combined terms for cognitive/mental workload with machine learning and
terms capturing ground-truth/labeling, real-time monitoring, forecasting, or
adaptive systems. In this review, we use the term prediction to refer to
any form of predictive modeling (regression or classification) of MWL. To
complement database results, backward and forward citation chasing was
conducted on included studies.

This review focused on machine-learning systems that classify
cognitive/mental workload states, based on sensor/response inputs and adapt
to input patterns. Inclusion criteria required studies to: (a) address cognitive
or mental workload; (b) apply machine learning for classification/prediction;
and (c) describe labeling and/or real-time state assessment/adaptation.
Studies also had to be peer-reviewed and presented in the English language.
We excluded reviews, theses and editorials, non-English publications, studies
absent of machine learning methods, and studies outside the scope of the
review.

Initially, a total of 449 records were identified. After removing duplicate
and irrelevant (out-of-scope) entries, 392 unique records remained for
screening. Title and abstract screening excluded 315 records that did not meet
the additional inclusion criteria, leaving 77 reports for full-text retrieval and
review (with 10 being unobtainable). We assessed the remaining 67 full-text
articles, of which 54 met all criteria. We then examined reference lists of
the included papers, identifying 32 additional candidates, of which 21 were
identified as eligible for further review. In total, 75 studies were included in
the final review. (Figure 1 shows the PRISMA flow diagram.)

Figure 1: Prisma flow diagram.
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We extracted key information from each study, including: application
domain, ground-truth MWL labeling method(s) and tool and/or criteria,
input modalities for prediction, ML model types/approaches, validation
strategy, and real-time operation. We also recorded whether an adaptive
intervention was implemented or proposed as part of a closed-loop system.
The MWL labeling approach was categorized as subjective, objective, hybrid,
or unsupervised/rule-based. The model validation type was classified as
subject-dependent (data on the same individuals used for training and testing)
or subject-independent (data on different participants used for training and
testing). Workload processing modes were classified as “Post-hoc analysis”
(data used solely for offline model development and validation) or “Real-
time monitoring” (trained models applied for inference during live task
execution). Regarding real-time adaptive interventions, the studies were
classified as “Tested” (i.e., a closed-loop system), “Proposed” (a concept
without implementation), or “None” (no adaptation considered).

RESULTS

Ground-Truth Labeling Methods

The reliability of workload predictions is contingent on the quality of
ground-truth labels used during model training. Table 1 summarizes the five
primary labeling strategies reported across the corpus of research. Objective
labels were most common and appeared in 41/75 articles (54.7%) with
derivation based on task conditions, tiers of difficulty, or performance
metrics. Subjective labels followed with 21/75 studies (28.0%) reporting
use based on standardized self-reports. Rule-based/unsupervised labeling
(6/75, 8.0%) and mixed subjective–objective labeling (4/75, 5.3%) were
less frequent. Hybrid-fusion methods (3/75, 4.0%) were rare for labeling.
This distribution suggests reliance on subjective labels remains widespread,
despite retrospective bias and low temporal resolution. Objective and hybrid
approaches are gaining traction but still lack standardization.

Table 1: Ground-truth labeling methods.

Ground-Truth
Method

Labeling Tool N %

Objective Task level (e.g., MATB/MATB-II),
performance/SME rules, and occasional
physiology thresholds. (MATB-II)

41 54.7%

Subjective NASA-TLX/RTLX, SWAT, Paas, SAM;
ratings binned to classes. (Human Factors
NASA)

21 28.0%

Rule-based/
unsupervised

Fuzzy/if-then thresholds; clustering/SSL to
derive states

6 8.0%

Subjective/
objective

Parallel subjective and objective labels used
in separate analyses

4 5.3%

Hybrid Fusion (weighted vote/rules) to form the
final class.

3 4.0%

Classification of methods among categories was based on the “final type of label used for model training/testing”;
self-reports used only for validation were not counted as “subjective labels”.
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Predictive Modeling

We found 57 workload classification studies that reported accuracy
metrics, including 44 subject-dependent and 13 subject-independent. On
average, subject-dependent models achieved 85.6% mean accuracy in
classification (range 64.9–99.7%) relative to ground-truth labels, while
subject-independent models averaged 80.3% accuracy (range 66.6–98.7%).
Two patterns emerged from this part of the review:

(1) Subject-dependent analyses more often report very high performance,
with 38% of studies reporting greater than 90% accuracy vs. only 8%
of subject-independent studies doing so.

(2) Subject-independent studies have a heavier lower tail, with 54% of
studies reporting less than 80% workload classification accuracy vs.
only 27% for subject-dependent studies. These results reflect inter-
subject variability: models trained and tested on the same persons can
exploit stable, individual-specific response patterns; leave-one-subject-
out exposes generalization limitations. For example, a subject-dependent
study that achieved 95.29% accuracy, when classifying workload within
the same level of task difficulty, produced only 72.2% accuracy for cross-
level classification and 53.83% accuracy for cross-task classification
(Zhao et al., 2018).

In addition, among subject-dependent studies, 32 utilized traditional
supervised models, including SVM, Random Forest, and other tree-based
models. In contrast, only 12 studies incorporated neural network-based
models (CNN, RNN, and Graph NN). For subject-independent studies,
seven employed traditional machine learning models, while six used neural
networks. Among subject-independent studies, one investigation measured
MWL using EEG measures for a sample of ten male volunteers and
reported a classification accuracy of 98.66% when using an ANN (artificial
neural network) trained on individualized alpha-frequency features (for 17
channels) and evaluated with leave-one-subject-out cross-validation (Samima
and Sarma 2023). This was one of the more impressive results from our
review, but the outcome benefits from a small, homogeneous cohort of
participants and the simplicity of a 3-class n-back (working memory) task.
In contrast, a high-density fNIRS study with 22 participants tested a multi-
branch CNN-BiGRU-SLA model with a leave-one-participant-out validation
approach and reported 0.9361 accuracy for binary working-memory load
and 0.8948 accuracy for visual perceptual load. Multi-level classification
accuracies dropped to 0.7994 for working-memory load and 0.7992 for
visual perceptual load (Wang et al., 2022). These examples illustrate that
subject-independent accuracy can be high when the sample is small, tasks are
simple or binary, and response feature-engineering explicitly reduces cross-
subject variability. Nonetheless, model performance generally decreases as
the number of participants and the complexity of the task increase.

Seven workload classification studies reported “balance-aware” metrics
rather than accuracy, including F1 scores, micro-F1 scores, the AUC metric,
and model sensitivity. F1 scores ranged from 0.664 to 0.9998. For example,
Agarwal et al., (2021) applied an LSTM (long-short-term memory model to
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accelerometer/EDA/skin-temp/HR responses for an F1 score = 0.9998, but
this result was for a single subject (i.e., subject-dependent modeling without
generalizability). Similarly, Grimaldi et al., (2024a) used fNIRS response
measures to classify workload responses with a weighted F1 score=0.80
and a macro F1 score (on the test dataset)=0.76. On the other hand,
Luo et al., (2021) applied an HMM (Hidden-Markov Model) to eye-tracking
gaze data, yielding an F1 score = 0.664 for subject-independent analysis.
This result reflects the challenge of balanced multiclass/sequence labeling
as a basis for workload classification. Studies applying regression analysis,
eight studies reported MAE (mean absolute error) measures ranging from
0.1105 to 11.11, with the best result occurring for a dual-branch attention
model using eye-tracking and PPG (pulse oximetry) measures in a subject-
independent analysis (Wei et al., 2025). Regression study results also revealed
MSE (mean square error) measures ranging from 0.17 to 1.487, and MAPE
(mean absolute percentage error) measures from 0.015 to 0.36; with subject-
independent setups generally producing less accurate classifications than
subject-dependent.

Processing Mode and Adaptive Interventions

The majority of studies reviewed performed post-hoc analyses on pre-
recorded data rather than functioning in real time. There were 64/75 studies
(85.3%) that used offline processing (e.g., Liu et al., 2024a; Grimaldi et
al., 2024a; Grimaldi et al., 2024b; Liu et al., 2024b; Vukovic et al., 2019;
McKendrick et al., 2019); whereas, only 11/75 studies (14.7%) performed
real-time monitoring (Wen et al., 2025; Jo et al., 2025; Wei et al., 2025; Yu
et al., 2025; Yang et al., 2024; Sandoval et al., 2022; Luo et al., 2021;
Planke et al., 2021; Luong et al., 2020; Lei et al., 2017; Aricò et al.,
2016). In terms of adaptive interventions, 64/75 studies (85.3%) proposed
a real-time intervention without implementation, and four studies (5.3%)
did not propose real-time adaptation. Seven studies (9.3%) tested a real-
time adaptive system in human–in-the-loop experiments (Wei et al., 2025;
Wen et al., 2025; Jo et al., 2025; Lei et al., 2017; Luo et al., 2021; Aricò
et al., 2016; Yang et al., 2024). Table 2 summarizes this distribution. These
numbers indicate that, despite frequent claims about adaptive or real-time
technologies, the majority of published work remains at the analysis stage.

Table 2: Processing mode with adaptive intervention.

Adaptive Intervention

Proposed Tested None Total

Workload
processing
mode

Post-hoc
analysis

60 0 4 64

Real-time
monitoring

4 7 0 11

Total 64 7 4 75
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Among the tested interventions, most studies explored secondary-task
difficulty manipulations, changes in the level of primary task assistance,
or automation state manipulations as the workload rose. Several studies
reported lower workload and better task metrics under adaptation.

Regarding MWL labeling methods as a basis for model training and
triggering adaptive interventions, McKendrick et al., (2019) formalized
labeling by either dividing datasets based on task difficulty levels, using
mixed-effects statistical models to account for differences in task difficulty,
vs. Rasch models accounting for task difficulty as well as estimated individual
capability. They showed that Rasch-based labels used with a Random
Forest machine learning model resulted in superior AUC outcomes and
supported cross-person/cross-task transfer. Wen et al., (2025) subsequently
demonstrated that fNIRS-based indicators of cognitive workload input to
an LLM-guided policy could be used to adaptively cue pilot attention in a
VR cockpit. They tested eight licensed pilots with real-time adaptive visual,
auditory, and textual cues. The system was labelled as the “AdaptiveCoPilot”
and maintained pilots at an “optimal” level of workload for greater periods of
time than baseline conditions, and improved task completion. In the driving
domain, Lei et al., (2017) applied EEG-based workload state classification
to adaptive task allocation. The system was capable of maintaining driver
workload near “moderate” levels but with only modest performance gains,
underscoring system feasibility more than effect size. Luo et al., (2021)
applied an HMM to gaze-trajectory data plus eyes-on-road frequency and
steering torque to scale haptic shared steering control in semi-autonomous
driving. Human-in-the-loop simulator tests (N = 24) revealed lower driver
workload, higher trust, better lane-keeping, and smaller control effort vs. a
non-adaptive control condition.

Proposed systems commonly describe real-time workload monitors/-
classifiers intended to trigger changes in the level of system automation,
reallocate task loads (e.g., across operators or robots), or deliver adaptive
feedback/training. However, these studies leave the closed-loop evaluation
untested. The near-absence of tested interventions underscores the gap
between predictive modeling research efforts and validated closed-loop
human–machine system implementations.

DISCUSSION AND CONCLUSIONS

The findings of this review highlight both progress and persistent challenges
in developing truly adaptive systems to respond to operator cognitive
workload. Ground-truth labeling remains a foundational hurdle. Many
studies still rely on retrospective self-report scales (e.g., NASA-TLX) as their
only method of labeling operator workload responses, which are coarse,
prone to recall bias, and lack the temporal resolution to capture rapid
cognitive demand fluctuations during tasks. Machine learning model training
on end-of-task subjective ratings typically only provides the capability for
gross classifications (e.g., “easy” vs. “hard” conditions) rather than detecting
dynamic and multi-level demand changes. This means that current models
may be optimized to classify imprecise workload targets, providing weak
capability to support automation interventions. Although over half of the
studies we reviewed did adopt objective task-based labels, no consensus or
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“gold standard” has emerged. Improving label fidelity through continuous
or real-time rating methods, multimodal ground-truth measures (combining
performance, physiological, and subjective indicators), or standardized
benchmark tasks with known difficulty levels is essential to enhance
classification/predictive model sensitivity and to allow for comparisons of
models across studies.

Another key challenge to adaptive systems for cognitive workload is
the generalizability of underlying models across users and contexts. Most
machine learning models achieve high classification accuracy only in subject-
dependent evaluations (trained and tested on the same individuals or task
conditions). When applied to new participants or different task domains,
performance often drops substantially, underscoring that many models may
have been overfit to their training datasets. A multimodal anomaly-detection
study achieved 95.3% accuracy in workload classification for the same
level of task difficulty but only 53.8% when tested across task difficulties,
highlighting the loss when conditions change (Zhao et al., 2018). Similarly,
McKendrick et al., (2019) showed that Rasch labeling of cognitive workload
responses, based on fNIRS data, combined with a Random Forest machine
learning approach, yielded ROC-AUC values of ∼0.91–0.92 for within-
task cross-validation. However, these values dropped to ∼0.81–0.82 for all
held-out participants. Promisingly, a few studies have achieved cross-subject
accuracies in the high 70-80% by using large, diverse datasets and domain
adaptation methods, but such cases remain exceptions. To enable practical
deployment, future research must prioritize robust validation on held-out
users and conditions for testing. This includes normalizing physiological
signals to individual baselines and developing feature extraction methods
that account for inter-person variability. Emphasizing cross-user evaluation
in model development will better reveal generalization limits and guide the
creation of algorithms that maintain accuracy in highly variable real-world
settings.

Perhaps the most significant research gap in this area is translating
workload predictions to forms of real-time adaptive assistance. While the
majority of papers conceptually propose adjusting various system functions
based on workload fluctuations, only a small fraction have actually
implemented and evaluated a closed-loop intervention with human users.
These few proof-of-concept trials suggest that adaptive systems can indeed
improve operator performance and regulate workload by, for example,
modifying task difficulty, reducing interface complexity, or elevating the
level of system automation when high workload is detected. However,
these demonstrations have been limited to small-scale lab studies in specific
domains, so it remains uncertain how well such approaches would generalize
to other environments and underload responses. Several factors likely
contribute to the paucity of tested interventions, including:

(1) integrating a workload model into a live control system is technically
complex and resource-intensive;

(2) there are safety and usability concerns that an unreliable workload
detector could trigger inappropriate actions (especially in high-stakes
domains like aviation or healthcare); and



A Systematic Review of Ground-Truth Labeling and Prediction 709

(3) evaluating closed-loop systems requires measuring not only prediction
accuracy but also the impact of the adaptation on human performance,
trust, or safety, which makes experimental design more challenging.

These barriers provide some explanation for why adaptive workload
management remains largely conceptual in the scientific current literature.

Taken together, machine learning techniques for workload estimation
have advanced to provide reliable real-time metrics, but their practical
impact will remain limited unless the above three challenges can be
addressed in parallel. The field of human-machine systems design and
engineering needs to move beyond algorithm development toward system-
level experimentation. Priorities should include establishing higher-fidelity,
standardized MWL labeling methods, design of models explicitly for cross-
user robustness, and conducting rigorous human-in-the-loop studies that test
adaptive interventions in realistic tasks. Only by simultaneously improving
label quality, model generalization, and closed-loop validation can cognitive
workload–adaptive systems fulfill their promise of enhancing performance
and safety in complex human–machine environments.

LIMITATION

One of the limitations of our study is that we only searched the Web of
Science database and employed backward and forward citation chasing.
Furthermore, coding ground-truth labeling methods occasionally require
interpretation, and the clarity of the authors’ reporting influenced our results.
This might have introduced bias.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science
Foundation under Grant Nos. CMMI-2535920 and CMMI-2535921. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
Agarwal, Ankita, Josephine Graft, Noah Schroeder, and William Romine. 2021.

“Sensor-Based Prediction of Mental Effort during Learning from Physiological
Data: A Longitudinal Case Study.” Signals 2 (4): 886–901. https://doi.org/
10.3390/signals2040051.
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