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ABSTRACT

In safety-critical and high-pressure environments, professionals frequently encounter
elevated cognitive states, including acute stress and mental workload (MWL), which
can ultimately lead to burnout. MWL is defined as the ratio between the available
cognitive resources and the demands of a given task, and can be assessed through
subjective self-reports, behavioural analysis, or physiological signal monitoring.
Among these methods, physiological monitoring stands out as the most promising
approach due to its independence from specific tasks and its capacity for real-time
application. This study aims to develop a non-contact system to estimate MWL levels
based solely on ocular signals, which can be captured using wearable devices such
as smart glasses or remote cameras. A cohort of 28 participants engaged in the Multi-
Attribute Task Battery Il (MATB-II) test, designed to induce cognitive workload through
multitasking, including visuomotor coordination, auditory reflex, logical reasoning,
and visual reflex. Additionally, a secondary arithmetic task was incorporated to further
explore varying levels of workload. Ocular features associated with each test phase
and the participant’s personal MWL evaluation were extracted, normalized, and used
in a machine learning pipeline to predict MWL states. The results demonstrate reliable
prediction, with an F1-score macro of 0.77, successfully distinguishing between rest,
low, moderate and high MWL states.

Keywords: Machine learning (ML), Mental workload (MWL), Multi-attribute-task-battery Il
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INTRODUCTION

Monitoring mental workload (MWL) is a crucial aspect of high-stakes
operational environments such as avionics (Yaven et al., 2023), healthcare
(Torkami-Azar et al., 2022), and the automotive industry (Wei et al., 2023),
where accurate and timely decision-making directly influences safety and
operational efficiency. The successful integration of advanced technologies,
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particularly those based on artificial intelligence (Al), requires the ability to
estimate an operator’s MWL in real time. This enables dynamic adaptation
of automation and support systems based on the operator’s cognitive state.
MWL assessment typically involves a multimodal approach, based on
subjective questionnaires, behavioural analysis, and physiological signals
monitoring. Questionnaires, such as the NASA-TLX (National Aeronautics
and Space Administration Task Load Index) (Hart et al., 1988), offer
insights into an individual’s perception of cognitive effort, while behavioural
analysis focuses on objective parameters like errors and reaction times.
However, both subjective questionnaires and behavioural measures lack the
ability to provide real-time, versatile, and scalable solutions, thus making
physiological signal analysis a promising alternative (Luzzani et al., 2024).
Among the minimally invasive physiological analysis, ocular signal offers
a promising solution for monitoring MWL due to its compatibility with
wearable technologies like eye-tracking glasses or front-facing environmental
cameras (Wang et al., 2021). Unlike traditional physiological signals, such
as electrocardiographic or respiratory signals, ocular signals lack a defined
periodic morphology, but they are characterized by distinctive events. Key
components include blinking, fixations, saccades, and saccadic intrusions
(Skaramagkas et al., 2021). The scientific interest in ocular signals for
MWL monitoring lies in their dual nature: physiological and behavioral.
They reflect neurophysiological processes in response to stimuli, evident
in pupil diameter, blink frequency, and saccadic activity. Additionally, the
scanpath, defined as the sequence of eye movements, is closely related
to the task performed, providing insights into attention strategies and
cognitive dynamics. This dual nature makes ocular signals particularly
useful for non-invasive, continuous monitoring in complex and dynamic
environments, ensuring safety and operational efficiency. To induce and
assess MWL in controlled environments, various experimental paradigms
have been developed, including arithmetic tasks (Borys et al., 2017), the
N-back task (Dayal et al., 2024), and the Multi-Attribute Task Battery II
(MATB-II) (Santiago-Espada et al., 2011), all designed to simulate high-
Intensity cognitive scenarios.

The goal of this study is to explore the exclusive use of ocular signals
for developing a processing and MWL prediction pipeline, based on Al
techniques. Most of the works found in the literature adopt a multimodal
approach, integrating various physiological signals to achieve accurate
estimates of cognitive workload (Gedam et al., 2021; Ialori et al., 2024; Das
et al., 2024). However, such approaches often require subject preparation
and can involve invasive or logistically burdensome procedures. In contrast,
the methodology proposed in this study relies solely on the analysis of
ocular signals, acquired through wearable eye-tracker devices in the form
of glasses that do not require any specific preparation. An experimental
campaign was conducted with 28 participants, using the MATB-II, selected
for its ability to induce a broad spectrum of MWL levels in a controlled
manner. The ground truth for training the predictive model was obtained
through a self-assessment questionnaire administered at the end of each
session. This questionnaire, specifically developed for the study, allowed for
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the collection of subjective data on the perceived mental workload, providing
a personalized and contextual evaluation for each subject and experimental
condition.

MATERIALS AND METHODS

In this section, we outline the main methodological aspects of the study,
providing a detailed description of the experimental protocol, the data
processing procedures applied to the collected signals, and the methods used
to construct and manage the resulting dataset.

Test and Protocol

The methodological structure underpinning the entire analytical pipeline is
based on the type of test used to induce MWL and the approach adopted
to collect subjective perceptions, which serve as ground truth for training
machine learning models. The computerized MATB-II was selected due to its
ability to simultaneously stimulate multiple sensory and cognitive domains,
including visual, auditory, memory, reflexive, and processing tasks, making it
particularly suitable for eliciting realistic and controlled cognitive workload
conditions. The experimental campaign involved a cohort of 28 voluntary
participants, recruited with informed consent and ethical approval from
the Ethics Committee of Politecnico di Torino (cod: 28686/2024). The
protocol included an initial 10-minute acclimatization phase, followed by
sensor setup. Eye-tracking data were acquired using Tobii Pro Glasses 3, a
wearable device with high portability, 50 Hz sampling rate, and an angular
accuracy of 0.6°. Each recording session consisted of a 5-minute baseline
period during which participants were asked to remain relaxed, followed by
five consecutive MATB-II trials. Each trial featured increasing complexity,
defined by the number of events to be managed and the trial duration.
Between trials, participants were given a 3-minute rest period during which
they were asked to provide a subjective assessment of the MWL perceived
in the preceding task. To this end, a custom rating scale was developed
based on the Bedford scale, widely used in the aviation domain (Roscoe,
1984), and adapted to the specific characteristics of the MATB-II task. The
scale consists of six levels, labelled from A to E representing increasing
levels of MWL. To ensure consistent experimental conditions and reliable
evaluation, participants underwent a preliminary training session aimed at
standardizing familiarity with the operational logic of the test environment,
and the subjective rating system. This phase was essential in minimizing inter-
subject variability in MWL perception, acknowledging that such variability
remains an intrinsic and inevitable aspect of psychophysiological research.

Signal Analysis

The acquired ocular signal underwent a preprocessing pipeline aimed at
extracting a set of features from each test phase, enabling their association
with the participants’ subjective perception. Specifically, the analysis focused
on the gaze trajectories along the horizontal (x) and vertical (y) axes,
projected onto the image plane captured by the device’s camera, as well
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as the pupil diameter signal. By jointly processing the horizontal and
vertical gaze coordinates, it was possible to identify and quantify the
main oculomotor events, including blinks, fixations, saccades, and saccadic
intrusions. Blinking refers to the involuntary and rapid closure of the
eyelids, typically lasting between 100 and 400 milliseconds. Under resting
conditions, blink rates average 10-20 events per minute but may increase
in response to fatigue, stress, or heightened cognitive demand. Fixations
correspond to periods during which the gaze remains relatively stable within
a specific region of the visual field, allowing for the processing of visual
information. Their typical duration ranges from 200 to 600 milliseconds
and is characterized by low ocular velocity (below 30°/s). In cognitively
demanding tasks such as reading or problem-solving, fixations tend to
become more frequent and prolonged, reflecting increased mental processing.
Saccades are rapid ballistic eye movements that shift the gaze from one
fixation point to another. These movements are brief (20-200 milliseconds)
and can reach velocities exceeding 100°/s. Saccadic intrusions refer to
involuntary micro-movements occurring within a fixation period, often
reflecting suboptimal visual control or attentional lapses. These events are
short in duration (20-100 milliseconds) and limited in spatial amplitude (few
degrees), yet they serve as indicators of visual instability and attentional
discontinuity. To further characterize the ocular scanpath a frequency-
domain analysis of the gaze signal was conducted. Specifically, the spectral
power distribution was examined across defined frequency bands to identify
dynamic patterns associated with varying levels of cognitive load. The
analysis focused on low-frequency components (up to 1 Hz), typically related
to slower and more stable gaze behaviour, and high-frequency components
(1-3 Hz), which are indicative of increased oculomotor activity and greater
fragmentation of visual exploration patterns. To automatically classify ocular
events, the algorithm described in (Luzzani et al., 2025) was applied
to the bidimensional gaze trajectories. For each of the oculomotor and
physiological components described, a set of features was computed; the
complete list is shown in Table 1. Simultaneously, the pupil diameter signal
was processed independently to evaluate its dynamic changes over time,
potentially reflecting sympathetic activation and fluctuations in cognitive
load, analyzing mean and standard deviation for both eyes. These features
serve as the foundation for subsequent analysis aimed at modeling mental
workload using machine learning techniques.

Table 1: Ocular features extracted to evaluate MWL.

Blinking Fixations Saccades Saccadic Spectral
Intrusion

Duration Duration Duration Duration HF

Frequency Frequency Frequency Frequency LF

Interval Velocity X Velocity LF/HF

Velocity Y Value
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Dataset Description

The study involved 28 voluntary participants (22 males and 6 females),
with ages ranging from 24 to 43 years (mean age: 29 years). The dataset
employed in this study was constructed by extracting a set of ocular features
corresponding to each of the six phases defined in the experimental protocol.
Each feature array, representing a single phase for a given participant,
was labelled with the perceived MWL level assessed using a custom six-
point scale ranging from A to E The initial resting phase was treated as a
separate reference class, intended to serve as a cognitively neutral baseline.
To enhance the robustness of the analysis and facilitate the application of
predictive models, the six workload levels were grouped in pairs, yielding four
distinct classes: the first representing the resting state; the second indicating
low MWL (ratings A and B); the third corresponding to moderate MWL
(ratings C and D); and the fourth reflecting high MWL (ratings E and
F). This reorganization aimed to reduce intra-class variability arising from
subjective perception and to produce a more balanced and consistent dataset,
better suited for training classification models dedicated to the automatic
classification of MWL levels. Figure 1 (left) illustrates the distribution of
subjective ratings as a function of the programmed difficulty level across
the five MATB-II test trials. The density curves reveal a clear trend:
perceived workload increases with task complexity, although some inter-
subject variability is evident. Specifically, for trials associated with low MWL
levels (ratings A and B, shown in blue and orange), the distributions are more
concentrated and align closely with the assigned task difficulty. Conversely,
for trials corresponding to medium-high workload levels (ratings D and E,
shown in green and pink), the curves show broader dispersion. This pattern
suggests that participants found it more challenging to accurately assess their
mental effort during more cognitively demanding conditions, likely due to
difficulty in distinguishing between adjacent levels of mental strain. Figure 1
(right) presents the distribution of subjective workload ratings (A to F),
analyzed to evaluate class balance, essential to ensure robust estimation of
model performance and to prevent bias during the training phase.
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Figure 1: Personal MWL evaluation related to: (left) MATB-II tests; (right) classification
classes (rest - low MWL - medium MWL - high MWL).
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RESULTS

The dataset was normalized using a min-max transformation applied
individually to each subject, following the removal of the baseline phase.
The adoption of subject-specific normalization aimed to minimize inter-
individual variability, thereby enhancing the robustness and generalizability
of the predictive model across different participants. Subsequently, the data
were partitioned into training and test sets with an 80/20 ratio. A key
constraint was introduced during this phase: each subject contributed exactly
six observations, one corresponding to the resting phase and five to the
active trials, assigned entirely to either the training or the test set. This
subject-wise splitting strategy was adopted to prevent data leakage and
to ensure a realistic evaluation of the model’s predictive performance. It
allows for testing on previously unseen individuals, thereby strengthening the
generalization capability of the trained models. Following data preparation,
a training pipeline was implemented, comprising a sequence of feature
selection methods and various machine learning (ML) algorithms, selected
from among the most established approaches in the literature for comparable
applications.

Feature Selection Methods and Classification Algorithms

To develop a robust predictive model, various combinations of feature
selection methods and classification algorithms were tested, as detailed in
Table 2. To optimize performance and minimize the risk of overfitting,
hyperparameter tuning was applied to each model using 5-fold stratified
cross-validation, which preserves the original distribution of workload
classes in each fold. After identifying the best-performing configuration, its
generalization ability was assessed on a separate hold-out test set, which had
not been used during training or validation. This final evaluation offers an
unbiased estimate of the model’s predictive capability on previously unseen
subjects.

Table 2: Feature selection techniques and classification algorithms used in the

analysis.
Feature Selection Techniques Classification Algorithms
SelectKBest (univariate statistical Logistic Regression Random Forest
test)
L1-based feature importance Nearest Neighbors ADABoost
Random Forest based feature Support Vector Machine ~ XGBoost
importance

Final Evaluation and Results

We used the confusion matrix (CM) to visualize a comprehensive picture
of model behaviour, providing an intuitive representation of the correct and
incorrect predictions for each class. This is especially useful in identifying
patterns of misclassification, such as confusion between adjacent workload
levels. F1-score, a metric that harmonizes precision and recall, has been
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used as a primary quantitative performance indicator, as it is well-suited
for multi-class classification tasks where sample distribution across classes
may be not uniform. The Fl-score, in addition, provides a more nuanced
view by accounting for both false positives and false negatives, in respect to
accuracy, and it can be computed per class to evaluate how well the model
performs individually on each workload level. This is especially important
in our context, where we aim to develop a system capable of distinguishing
between different levels of cognitive workload with high fidelity. The ocular
features selected are the following: Blinking Duration Mean, Blinking
Frequency Mean, Blinking Interval Mean, Saccade Frequency Mean, Y-axis
Saccade Velocity Mean, Fixation Duration Mean, Fixation Frequency Mean,
Saccadic- Intrusion Frequency Mean, High-Frequency Power (HF) on X-axis
Gaze, Low-Frequency to High-Frequency Power Ratio (LF/HF) on X-axis
Gaze. In Figure 2, we show the CM of the perceived against the predicted
MWL for the rest and the three workload levels for the best model.

Rest

Low

True label

Moderale

High

Low Maoderate High
Predicted label

Figure 2: Best model confusion matrix.

In Table 3, we show the classification report indicating the F1-score,
precision, recall and accuracy, for each predicted class and the macro and
weighted average performance. The rest condition and low MWL level are
reliably classified, with F1-scores of 0.90 and 0.87, respectively. Notably, the
precision for the rest class is 1.0, indicating that all instances predicted as
rest were correctly classified. In contrast, the precision for low MWL is 0.77,
suggesting that the model mistakenly assigns some high workload data points
to the low workload class. Despite this, low MWL shows a recall of 1.0,
meaning that all true instances were correctly identified by the model. In the
medium-to-high MWL range, the model’s performance degrades, obtaining
F1-scores of 0.71 and 0.62, respectively, reflecting a significant degree of label
confusion in this region. The poorest performance is observed for the high
MWL class, where the model frequently misclassified instances as belonging
to moderate or even low workload levels.
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Table 3: Best model classification performance.

F1-Score Precision Recall Accuracy
Rest 0.89 1.0 0.80 0.80
Low MWL 0.87 0.77 1.00 1.00
Moderate MWL 0.71 0.71 0.71 0.71
High MWL 0.62 0.71 0.56 0.56
Macro Average 0.77 0.80 0.77 0.77
Weighted Average 0.77 0.78 0.77 0.77

Several factors may explain these results. The five MATB-II procedures,
although designed with varying difficulty levels and supplemented by a
secondary task, may not be sufficient to elicit consistently distinct subjective
workload states, particularly in the medium-to-high range. The MATB-II
framework itself, while effective for inducing general workload conditions,
may be limited in its granularity, making it easier to distinguish between
low and high workload, but less effective at differentiating within the
medium spectrum. Finally, the observed confusion between medium and high
workload levels may stem from individual variability and subjectivity in self-
assessment, which can lead to inconsistencies in the labelling of adjacent
workload levels.

Empirical Online Validation

The results described in the previous section focuses on testing the
classification model based on the features extracted on the entire duration of
each procedure. In this section we want to describe an empirical validation
of the model, when it is used in an online application. There is one point
that is fundamental to discuss before showing the results of these tests:
the model has been trained using the features extracted from the whole
signals collected during the procedure. We are now using the features
extracted in real-time on a smaller time window, hence the results of the
classification could be different from what obtained during the previous
validation. The online validation requires the development of a raw data
streaming system, with its components communicating via MQTT (Message
Queuing Telemetry Transport). To empirically validate the effectiveness
of the workload classification model, we designed three specific MATB-II
procedures, each combined with a secondary task, proposed on a subset of
5 participants selected from the main study. Following the completion of the
tasks, we conducted a structured debriefing session, exploring the subjective
experiences and perceived workload levels reported by each participant
compared with the real-time workload classifications generated by the model
to qualitatively assess the consistency or to identify potential discrepancies
or areas for future refinement. The predictive pipeline demonstrated high
effectiveness, enabling fast and responsive inference even when operating on
short segments of ocular signal. Although objectively validating the alignment
between the model’s predictions and the participants’ actual cognitive states
remains inherently challenging, the system consistently captures overarching
cognitive trends. Notably, segments subjectively identified by participants
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as cognitively demanding were systematically classified by the model as
high MWL episodes. This outcome suggests that the system is capable
of effectively tracking MWL fluctuations, particularly during periods of
elevated cognitive demand. However, the model showed reduced precision
in estimating the exact duration of a specific cognitive state, an expected
limitation of the sliding window approach, which inherently introduces a
delay between the onset of a cognitive change and its detection. As new ocular
data accumulate over time, the model progressively updates its predictions,
resulting in a slight latency in state recognition. These findings should be
interpreted as a promising first step toward the integration of real-time MWL
monitoring. While the current results are not yet definitive, they validate the
feasibility of the proposed pipeline in realistic conditions and clearly highlight
key directions for future improvement, particularly regarding the system’s
temporal resolution and adaptive responsiveness.

Future Improvements

Future developments of this work will focus on enhancing classification
performance in both offline and online modes through two main strategic
directions. The first involves the integration of additional sensing devices
dedicated to monitoring physiological parameters known to be strongly
associated with MWL, such as cardiorespiratory activity, electrodermal
activity, or functional near infrared spectroscopy. Priority will be given to
low-impact, wearable technologies that can be easily adapted to various
application domains. This integration aims to increase the robustness and
accuracy of the predictive system in real-world scenarios. The second strategy
targets the optimization of the data acquisition protocol by increasing
the temporal density of subjective workload assessments. More frequent
collection of subjective labels would provide a dataset that better reflects
the temporal dynamics typical of real-time applications, thereby supporting
the training of predictive models that are more closely aligned with expected
operational conditions.

CONCLUSION

This study focused on developing a predictive model of MWL based solely
on ocular signals, leveraging their ease of acquisition through wearable
or even non-contact devices. A data collection campaign was conducted
involving 28 voluntary participants, using the MATB-II as a workload
inducer and obtaining subjective workload assessments to serve as ground-
truth for model training. The analysis pipeline combining a feature selection
model with a classifier yielded the best results, achieving an overall F1-
score of 0.77 in classifying MWL across four levels (rest, low, moderate,
high). One of the main challenges encountered concerned the inherently
subjective nature of workload labelling and the difficulty of reliably eliciting
and identifying intermediate workload states. The model demonstrated
high reliability in detecting low MWL, an essential feature for real-world
applications such as pilot monitoring or adaptive automation, where
timely recognition of transitions out of low-demand states is critical. The
subject-wise data split ensured that model generalization was evaluated on
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previously unseen individuals, reinforcing the robustness of the proposed
approach, particularly for clearly defined conditions. These findings indicate
that, even with a modest dataset and subtle inter-class distinctions, ML
models can extract meaningful patterns associated with cognitive load.
Additionally, the observed confusion patterns provide valuable insights
for refining the experimental design and labelling strategies, for example
through more objective ground-truthing methods or task structures tailored
to better elicit intermediate workload states. Overall, this work underscores
the potential of ocular-based predictive models in MWL estimation and
highlights the importance of rigorous experimental protocols to enhance
model interpretability and reliability.
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