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ABSTRACT

Aligning 3D objects with their poses in 2D images has traditionally relied on manual
trial-and-error rendering, where human annotators repeatedly adjust parameters until
the object appears to match the scene. This process is not only slow and labour-
intensive, but also cognitively demanding, leading to human fatigue and inconsistent
results. The reliance on such tedious workflows makes it difficult to scale annotations
across entire video sequences, while the increased likelihood of error limits the
reliability of the generated data. To address this gap, we present an interactive
3D-to-2D visualization and annotation tool that aids in accurate human annotation
of 3D object poses. To our knowledge, this is the first system that allows users
to directly manipulate 3D objects to support alignment to a 2D real-world scene,
providing an intuitive 3D graphical user interface for annotating object positions and
orientations. The tool integrates visual cues with spatial context to support swift and
accurate pose annotation. By offering real-time visualization, depth estimation, and
both single- and multi-object linked pose annotation, the proposed tool establishes
a practical foundation for generating reliable pose data. By reducing the burden
of numerical trial-and-error rendering and making pose annotation more intuitive,
this tool advances human involvement in dataset generation, enabling researchers
to more efficiently and accurately create the data needed to drive progress in
downstream Al and vision-based applications. This interactive tool is available at
https://github.com/InteractiveGL/vision6D.
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INTRODUCTION

Annotating 3D object poses in 2D images remains a time-consuming and
cognitively demanding process, particularly when extended across long
video sequences or complex object interactions. Traditional pose annotation
workflows often rely on repetitive trial-and-render methods, requiring users
to manually adjust object positions, render results, and visually verify
correctness in a laborious iterative loop (Hodan, 2017; Drost, 2017). This
lack of immediate feedback and ergonomic support makes the task tedious,
error-prone, and difficult to scale. Although automated pose estimation
algorithms can generate initial predictions, their results often require
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extensive numerical correction due to occlusions, lighting inconsistencies,
and ambiguous object geometries (Hodan, 2018). Existing tools, however,
rarely integrate humans into the refinement loop in an intuitive or interactive
way (Guan, 2024). Users are left to interpret numerical outputs, matrix
parameters, or static overlays without meaningful guidance. As a result,
human annotators face high cognitive load and reduced sense of control when
engaging with complex numerical data. This gap highlights the need for a
human-centered approach that not only leverages computational accuracy
but also empowers users through interaction design, feedback mechanisms,
and ergonomic visualization of the pose annotation process.

To address this challenge, our work introduces a novel human-in-the-
loop pose annotation tool that integrates computational estimation with
an interactive, ergonomically designed interface. Rather than treating pose
retrieval as a fully automated numerical problem, this tool repositions
humans at the center of the process, allowing them to visualize, adjust,
and refine 3D poses interactively in real time. This approach not only
supports the creation of high quality, domain-specific datasets but also
reduces cognitive load by providing immediate visual feedback of alignment
between 3D models and the corresponding 2D images. By enabling
so, the system addresses principles of human factors and ergonomics,
providing users to build trust in the annotation process with real time
visualization and pose updates, and achieve greater efficiency when working
with complex real-world objects. Beyond the technical scope, the design
choices of our system underscores the importance of user experience in
data annotation systems. Our proposed interface emphasizes intuitiveness,
accessibility, and adaptability across various domains including supporting
robot-assisted applications in medicine (Zhang, 2024; Zhang, 2025),
agriculture (Wakchaure, 2023), and autonomous systems where custom
pose datasets are often essential (Fonteles, 2024). By shifting the narrative
from matrix manipulation and calculation to interactive human-computer
collaboration, our approach leverages AR-inspired design principles to
create an annotation workflow that is not only technically robust but also
ergonomically supportive of human cognitive and perceptual capabilities.

Therefore, this paper proposes a user-centric framework for pose
annotation that highlights the role of human factors in enabling reliable,
efficient, and intuitive dataset generation. Our proposed work focuses on
designing a pose annotation system where technology enhances and assists
human performance (Lucchese, 2024). The tool represents a step forward
in addressing the gap between automated and non-flexible pose estimation
algorithms and human-centered refinement, equipping users to actively shape
outcomes with greater efficiency. The highlights of our proposed augmented
reality 6D pose annotation interactive tool are summarized below:

1. Immediate and Intuitive Feedback: The interactive visualization provides
immediate, continuous feedback, reducing cognitive load and supporting
users in forming a clear mental model of the 3D-2D alignment.
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2. Cognitive Support for 3D Reasoning: By making depth cues explicit,
the system supports human perceptual limitations in interpreting 3D
structure from 2D views, minimizing errors caused by ambiguity.

3. Precision with Reduced Frustration: The single-object annotation mode
enables focused, high-precision interaction, reducing task complexity
and minimizing accidental misalignment.

4. Linking Poses with Context Preservation: By linking multi-object poses
in the annotation tool, the system maintains spatial consistency, helping
users preserve context and avoid repetitive manual corrections. This
reduces annotation fatigue and supports efficient workflows in complex
scenes.

PROPOSED HUMAN-IN-THE-LOOP FRAMEWORK

The proposed framework has followed the Dual Coding Theory (DCT)
(Clark, 1987; Buonocore, 2025) which states that human cognition
benefits from the non-verbal processing systems that visual representation
complement abstract information. In this context, augmented reality-
assisted systems deliver clear and intuitive visual cues that can enhance
user understanding, engagement, and performance in computer-assisted
tasks (Davalos, 2024). Within the domain of Human-Computer Interaction
(HCI), the interactions with digital content has been broadly categorized
into modalities such as sensor-based input, including devices like
keyboards, mouse, and other peripherals (Nizam, 2018). Furthermore,
Nielsen’s Usability Heuristics (Krawiec, 2020) emphasize the importance of
consistency, feedback, and error prevention, demonstrating that the system
design should align with user expectations and natural behaviours. Guided
by these principles, we developed an interface that incorporates both visual
feedback and mouse-keyboard interaction, as illustrated in Figure 1, to
support efficient and user-centered pose annotation within the proposed
system.
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Figure 1: Input/output user interface explained in the proposed pose annotation
system. Click-and-Drag gesture, keyboard hotkeys, and multi-view utilities makes data
annotation more intuitive and user friendly.
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(a) Initialization Stage

(d) Object Pose Visualization using Hotkeys

(e) Multi-objects Linking (f) Pose Information Output

Figure 2: Walkthrough of the proposed system. Images (a-b-c-d-e) indicate example
steps in obtaining object poses through interactive visualization and registration.
Image (f) shows immediate updates of the current pose information and prior pose
history.

Users interact with the proposed pose annotation system through sensor-
based inputs, such as keyboard and mouse, to register and adjust 3D object
poses. Figure 1 (a) illustrates the click-and-drag interaction, where the user
aligns a 3D model with the corresponding 2D scene. Figure 1 (b) shows the
successful registration outcome, while Figure 1 (c¢) compares the targeting
object’s pose before and after adjustment, enabling users to visually verify
improvements in alignment. This view is accessed efficiently via a keyboard
shortcut (Tab key), reducing the number of steps required and supporting
ergonomic interaction. Finally, Figure 1 (d) demonstrates the system’s output
of the pose matrix, which is updated in real-time to provide immediate
visual feedback. This feedback loop allows users to continuously monitor the
results of their actions, evaluate pose accuracy, and decide whether further
refinements are needed. Figure 2 illustrated below provides a step-by-step
walkthrough of the primary functions implemented in the proposed system
using a widely-used pose estimation dataset (Brachmann, 2020), including
loading and displaying 2D images and 3D objects on the canvas, adjusting
and refining object positions, and the visual feedback of the pose annotations
and associated information. Specifically, Figure 2 (a) shows the initialization
stage, where the user can import the target 2D image and the corresponding
3D models from there. Figure 2 (b) demonstrates how both the image and
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the objects are displayed in the shared canvas environment, allowing the
user to visually align the 3D objects directly to the 2D scene. In Figure 2 (c),
object position and orientation can be manipulated through straightforward
input controls (keyboard and mouse), supported by real-time feedback to
ensure the customizable pose adjustments. Figure (d) illustrates the use of
hotkeys that allow users to quickly inspect the object poses independently of
the 2D image scene. Figure 2 (e) shows the multi object linking function in
the system, where the user can easily control multiple objects simultaneously
for efficient pose registration. Finally, Figure 2 (f) outputs the real-time pose
information alongside a record of historical pose matrices, supporting both
transparency and traceability of the annotated process.

The overall system design emphasizes consistency and immediate visual
feedback, reducing cognitive load while enabling users to progressively
refine 3D object poses with confidence and control. By combining visual
representations with sensor-based interaction, the system supports efficient,
ergonomic, and user-centered workflows for pose annotation related tasks.

RESULTS AND FINDINGS

To evaluate the effectiveness and usability of the proposed pose annotation
system, Table 1 presents six samples from human annotations on object
poses generated from our interactive interface. The first column lists the
case number, followed by the corresponding human-annotated object poses
via visual cues provided from the system. For comparison, the third
column provides the ground-truth pose matrices obtained from the pose
estimation dataset named LINEMOD-O (Brachmann, 2020). To quantify
annotation performance, we report two widely-used pose error metrics: Eg,
the angular distance error (in degrees) (Teyssandier, 2006) which measures
the rotational difference between the annotated and ground-truth poses; and
Et, the Euclidean distance (Liberti, 2014) in millimeters, which reflects the
transitional deviation between the two matrices.

Table 1: Samples of human-in-the-loop pose annotations using the proposed system.

Ground-Truth Pose Matrix Er Er

N Human Annotated Pose Matrix

1 [[0.9114, 0.4089, 0.0468, [[0.8956, 0.4354, 0.0932, 49 9.5
~24.7800], [0.4027, -0.8626,  —-24.8778],[0.4377, -0.8226,
~0.3063,-17.2300], [-0.0849,  —0.3634,-15.6402], [-0.0816,
0.2980,-0.9508, 1106.5400],  0.3662,-0.9271, 1097.1863],

[0.0000, 0.0000, 0.0000, [0.0000, 0.0000, 0.0000,
1.0000]] 1.0000]]
2 [[0.9671,0.2441, 0.0722, [[0.9573, 0.2739, 0.0930, 2.5 8.9

~37.4400], [0.2544, —0.9157,
~0.3112, 166.7612], [-0.0098,
0.3193,-0.9476, 986.5400],
[0.0000, 0.0000, 0.0000,
1.0000]]

-35.0693],[0.2892, —0.9135,
-0.2862, 168.3097], [0.0066,
0.3009, -0.9537, 978.1587],
[0.0000, 0.0000, 0.0000,
1.0000]]

Continued
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Table 1: Continued

N Human Annotated Pose Matrix  Ground-Truth Pose Matrix Er Er

3 [[0.4806,0.8723,0.0897, [[0.4624,0.8798,0.119, 2.3 11.8
-69.4300], [0.8433,-0.4317,  —71.9268],[0.8614,-0.4121,

-0.3201, 23.8133], [-0.2406, -0.300, 22.5920], [-0.2147,
0.2295,-0.9431, 1026.5400], 0.2409,-0.9475, 1015.1082],
[0.0000, 0.0000, 0.0000, [0.0000, 0.0000, 0.0000,
1.00001]] 1.0000]]

4 [[-0.9922,-0.0902, 0.0862, [[-0.9758, -0.1923, 0.1043, 6.8 5.0
-105.6925],[-0.1143, 0.9342, -106.5101],[-0.2141, 0.9374,
-0.3378,252.1267], [-0.0501,  -0.2747,250.2484], [-0.0449,
-0.3450,-0.9373,1006.5400], -0.2904,-0.9559, 1002.0606],

[0.0000, 0.0000, 0.0000, [0.0000, 0.0000, 0.0000,
1.0000]] 1.0000]]

S [[0.0553,0.9935,0.0994, [[0.0194, 0.9854, 0.1690, 4.6 14.0
187.1882],[0.9614, -0.0261, 189.8814],[0.9582, 0.0300,
-0.2740,-62.5707], [-0.2697, -0.2846,-62.4703], [-0.2856,
0.1107,-0.9566, 1146.5400], 0.1674,-0.9436, 1160.3044],

[0.0000, 0.0000, 0.0000, [0.0000, 0.0000, 0.0000,
1.0000]] 1.0000]]
6 [[0.2716,-0.9614,-0.0433, [[0.3063,-0.9519,-0.0153, 5.3 3.0

~81.7160], [-0.9546, -0.2634,
~0.1393,-233.5716], [0.1225,
0.0792,-0.9893, 1156.5388],
[0.0000, 0.0000, 0.0000,
1.0000]]

-78.8694], [-0.9506,-0.3049,
-0.0603,-232.6228], [0.0527,
0.033,-0.9981, 1156.5381],
[0.0000, 0.0000, 0.0000,
1.0000]]

In summary, these error measures Er and E1 demonstrate not only
the accuracy of human annotations achieved through the proposed system
but also the usability of applying simple and intuitive visual cues for
pose alignment. Unlike traditional numerical manipulation of pose matrices
(Horn, 1987; Triggs, 2000), the system enables users to engage with the
task through natural perceptual and hand-motor interactions, lowering
the cognitive demands associated with abstract pose transformations. By
providing immediate visual feedback and intuitive sensor-based controls,
the human-in-the-loop interface supports cognitive ergonomics, allowing
users to verify, refine, and confirm pose annotations immediately with
reduced mental effort. This design strengthens user confidence and trust
in the annotation process by providing transparent and clear visual
feedback, while ensuring final results that are reliable and comparable in
accuracy to ground-truth poses. From a human factors perspective, these
findings highlight the importance of embedding ergonomic principles into
the pose annotation tools. The results suggest that the proposed system
not only preserves technical rigor in 3D object pose estimation but also
enhances workflow efficiency and supports user engagement via prompt

feedback.
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LIMITATIONS AND FUTURE WORK

One noticeable limitation of the proposed pose annotation tool lies in
handling round and symmetric texture-less objects, such as spheres or
cylinders. From a human factors perspective, these objects impose significant
cognitive challenges because they lack distinctive features or markers for
annotators to confidently determine orientation. The resulting rotational
ambiguities can lead to multiple possible pose solutions that appear equally
valid to the human eye. Those ambiguities not only slow down the annotation
process but may also contribute to user frustration. One possible solution is
to texture the object and thus, they will have distinguishable features when
users are annotating the poses.

For future work, integrating 2D-to-3D Point-and-Perspective (PnP)
registration technique (Yu, 2024) could provide initial automated predictions
that serve as starting points for the object pose annotation. Using PnP
would allow annotators to have an alternative route to pose annotation
that leverages from indicating, via clicking, the matching 3D points on
the object and their corresponding 2D point on the scene image. By
offering this additional functionality in the manual registration process, we
can further reduce cognitive workload while maintaining user agency and
control. Moreover, instead of annotating poses in individual images, the
system can evolve toward a hybrid workflow to assist video pose annotation
where initial human input is propagated automatically across a video using
geometric tracking and camera localization, such as SLAM-based approaches
(Alsadik, 2021; Khairuddin, 2015). In such scenarios, users would only
refine and adjust propagated annotations, thereby improving efficiency while
minimizing overall manual effort. Ultimately, these suggestions and directions
opens many avenues for broader exploration of AR-driven visual pose
annotation support and potentially design human-in-the-loop collaborative
systems that balance machine efficiency and human insight.

CONCLUSION

Beyond the immediate benefits to object pose estimation research, the
proposed cross-platform system demonstrates how ergonomically informed
design can enhance the usability and accessibility of general pose annotation
tasks. Our work aim to shift the perspective from the traditional numerical
object pose matrices calculation and manipulation to weigh more on human
factors that emphasizing immediate visual feedback and prompt adjustment
of poses using the proposed human-in-the-loop system. Finally, this system
demonstrates that it is essential to design tools that support and enhance
human cognition and decision-making. Instead of requiring users to interpret
or direct manipulate transformation matrices, the system provides intuitive
pose visualization and interactive controls that align with natural human
perceptual and motor capabilities.

SUPPLEMENTARY MATERIAL

An example video demonstrating robust and efficient registration of a 3D
object to a 2D scene is available: https://github.com/InteractiveGL/vision6D?
tab=readme-ov-file#3d-to-2d-visualization-and-annotation-desktop-app-
for-6d-pose-estimation-related-tasks
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