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ABSTRACT

This paper introduces a conceptual framework for emulating explainable human
driving behavior in human-in-the-loop simulators, with a focus on autonomous
driving research in mixed-traffic environments. The framework integrates open-
source and experimentally collected driving data, psychological insights, advanced
clustering algorithms, and interpretable artificial intelligence techniques to model
diverse, realistic driver behaviors. Key to this approach are the methods used to
acquire rich behavioral datasets, apply clustering to distinguish human driver profiles,
and leverage explainable artificial intelligence tools, such as heat maps and correlation
analyses, to validate and refine models transparently. By emphasizing adaptability,
generalization, and interpretability, the framework improves the realism, safety, and
reliability of autonomous vehicle simulations. This supports regulatory acceptance
and aids in the identification of critical traffic scenarios. This multidisciplinary
methodology connects behavioral science, simulation technology, and artificial
intelligence development to advance the robustness and human-centric validation of
autonomous driving systems.

Keywords: Mixed-traffic simulation, Explainable human driver behavior, Human-in-the-loop
simulation for vehicle test beds

INTRODUCTION

The evolution of autonomous driving has led to a paradigm shift in
urban mobility, offering significant improvements in safety, efficiency,
and accessibility. However, despite remarkable technological advances,
fully autonomous vehicles that can interact seamlessly with dynamic,
heterogeneous road environments remain a challenge for industry and
academia. One central aspect in this field depicts the presence of mixed-traffic
scenarios within the upcoming decade(s) (Chu et al., 2024). For the near
future, roads will be populated not only with fully automated vehicles (AVs),
but also with conventional, manually driven vehicles, as well as vulnerable
road users, such as cyclists and pedestrians (He et al., 2025; Witt et al., 2019).

The coexistence of these diverse actors introduces considerable complexity
to real-world traffic systems. Human drivers possess a significant
heterogeneity in driving styles, risk tolerance, and decision-making, resulting
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in a range of behaviors, from aggressive lane changing to cautious yielding.
Recent studies demonstrate how behavioral discrepancies between AVs
and human-driven vehicles (HDVs) can expose weaknesses in AVs safety
strategies, particularly in high-risk areas such as freeway merging zones
and intersections (He et al., 2025; Park and Zahabi, 2024). To be more
concrete, recent research exposes that AVs, which are programmed to
perform conservative maneuvers to maximize safety, may inadvertently cause
congestion or hazardous interactions when mixed with assertive HDVs
(He et al., 2025).

Consequently, the modeling and understanding of this complexity
remains one major research priority. Classic mathematical, mesoscopic,
and macroscopic traffic models usually depend on high-level abstractions
and ignore detailed driver behaviors and psychological states. While these
models are valuable for studying aggregate traffic flows, they lack the
granularity which is necessary to emulate individual driver reactions or to
train autonomous systems to handle critical situations. To conclude, the
primary goal of these models are traffic flow optimizations but not safety and
scenario-based (Ulbrich et al., 2015) behavioral driving analysis. Conversely,
Human-in-the-Loop (HITL) simulators need to capture rich behavioral data
from real drivers responding to simulated environments. These simulators
allow researchers to study drivers’ cognition, emotions, and physiological
states in various and potentially provocative conditions. However, driver
studies are expensive and time-consuming (Driggs-Campbell et al., 2014;
Lüken-Winkels, 2024; Meteier et al., 2023).

Current HITL simulation approaches are often closed or scenario-specific.
They focus on small, well-defined scenarios with a limited number of objects
rather than complex scenarios rich in detailed information. These approaches
cannot be generalized to new, unknown scenarios, e.g. (Bagdatli and Dokuz,
2021; Bing et al., 2018; Gu et al., 2017; Xu et al., 2021). This fact limits their
ability to adapt to new conditions. These models, which are trained with
limited, scenario-based data, have never encountered more complex inputs
and thus have not had the chance to adapt to them.

Conversely, explainable AI (XAI) methods and their potential application
to behavior clustering in complex, mixed-traffic environments can be
investigated. An overview over different XAI approaches for clustering of
datasets is given e.g. by Cannone (Cannone, 2020). Here, explainability is
often provided by heatmaps or other human-readable data that highlight
relevant input data, as well as by human interpretation that these areas
truly correlate to the given output class. However, the results by Cannone
were not obtained in the context of driving scenarios. In contrast, different
research papers (Tselentis and Papadimitriou, 2023; Zhang et al., 2021)
investigated clustering algorithms in the context of traffic simulations,
however explainability was not in the focus here.

Thus, the challenge to establish frameworks that can identify and
explain observed behavioral clusters of drivers remains in combination with
modelling of the observed and clustered behavior. This work introduces
a conceptual framework that aims to address these challenges by training
specific algorithms with interpretable driver characteristics (e.g., fatigue)
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in HITL simulations. The framework provides evidence of explainability
through multidimensional heatmaps or correlation techniques.

PROBLEM FORMULATION

This section clarifies the problem definition underlying our work. According
to Figure 1, there are multiple engineering tasks and use cases in the field of
driving simulators. One distinction on the usage side of driving simulators
can be made based on whether the driving simulator is used for educational
purposes or during the development phase of advanced driver assistance
systems (ADAS) and AV algorithms, as shown on the left side of Figure 1.
ADAS systems often include the driver – at least in critical situations – as part
of the overall vehicle system; thus, HITL simulators are used when the driver
is part of the reaction chain. In contrast, developing pure AV algorithms does
not require a driver; thus, the system under test is set up by the vehicle itself,
a process called vehicle-in-the-loop (VIL) testing (Berg et al., 2015).

The development of simulators is another aspect that needs to be
completed before usage, as the underlying requirements are based on the
intended use. Figure 1 on the right shows some subpackages for this,
including scenario development. These scenarios, which serve as input vectors
during simulator usage, must be carefully chosen and may include vehicles
controlled by humans, as well as other elements, such as bicycles. Our
problem definition lies in developing these vehicles within the simulation
to behave like human-controlled vehicles. The main requirements for this
task are

a) explainability of these driver models for safety reasons,
b) classification possibilities for their integration and categorization in test

cases, and
c) generalization aspects to enable the simulation to show a wide, complex

range of scenarios.

Figure 1: The problem definition and engineering tasks for driving simulators are
divided into usage and development.
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STATE-OF-THE-ART

There are multiple simulation platforms in the field of ADAS and AVs. Our
problem definition is the development of vehicles controlled by human-like
drivers in a simulation. This will be achieved by training an AI with data for
open datasets and specific driving data captured on a HITL and linking it
with knowledge from psychological studies.

Consequently, this chapter introduces the state-of-the-art of psychological
research on human driving behavior and technologies for dataset clustering.

Psychological Research on Human Driving Behavior

Psychological models of driving behavior emphasize how personality,
emotion, cognition, and mental health shape risk and safety
(Gianfranchi et al., 2017). Conscientiousness and agreeableness reduce
risky driving, while neuroticism and sensation seeking lead to unsafe
and aggressive styles (Luo et al., 2023). Emotional states further affect
performance: anger and anxiety impair attention and reaction, whereas
positive moods have mixed effects (Luo et al., 2023; Öztürk et al., 2024).
Models also account for emotional regulation, stress, and cognitive load,
with dual-process theories showing that distraction and multitasking increase
errors by disrupting controlled hazard responses (Engström, 2011; Wang
et al., 2023).

Depression and anxiety are modeled alongside personality and emotion
because they increase risk and influence how drivers perceive and manage
space and time on the road (Babulal et al., 2024). According to the
Driver Risk Field (DRF) theory (Kolekar et al., 2020), drivers act to keep
perceived risk below a personal threshold. Dual-process and personality
models integrate situational states (e.g., fatigue, mood) with stable traits to
predict crashes and violations.

Assessments use tools such as the Driver Behavior Questionnaire
(DBQ) (Reason et al., 1990) and the Driving Behavior Survey (DBS)
(Clapp et al., 2011), as well as personality and emotion scales (Dula and
Ballard, 2003). Other methods include simulator studies, eye tracking, and
physiological measurements (Himmels et al., 2025). These methods support
risk assessment, licensing, insurance models, and the development of tailored
training programs and emotional regulation strategies.

In summary, psychological modelling of driving focuses on explanatory
frameworks that use personality, emotion, cognitive load, and mental
health to understand and predict driver behavior, with references grounded
in validated questionnaires, experimental studies, and contemporary
theoretical.

Clustering Mechanisms

As autonomous technologies have become more prevalent, the modeling of
human driver behavior has evolved from rule-based heuristics to data-driven
machine learning paradigms. Advanced clustering algorithms, including
k-means (Jin and Han, 2011), hierarchical approaches (Nielsen, 2016),
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
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(Ester et al., 1996), and Gaussian Mixture Models (GMMs), now identify
latent driver styles and behavior profiles from large, multimodal datasets
(e.g., trajectory, acceleration, control signals, and physiological indicators)
(Maruthi and Bilas, 2022; Mobini Seraji et al., 2025; Tselentis and
Papadimitriou, 2023; Zhang et al., 2021). These clusters make it possible
to classify intricate human behaviors such as risk-taking, distraction, and
fatigue but often lack in interpretability and human readability.

Thus, a key contemporary focus is explainability of clustering mechanisms.
Classic machine learning models often act as black boxes, creating barriers
to regulatory verification, user trust, and engineering integration. XAI
tools, such as Local Interpretable Model-agnostic Explanations (LIME) and
SHapley Additive exPlanations (SHAP), illuminate the decision boundaries
and influential features within data clusters but not in the context of
driving behavior. Hence, these tools can be used to bridge the gap between
data-driven performance and human interpretability. This is especially
important in safety-critical applications, where transparent classification
(e.g., distinguishing aggressive from fatigued drivers) fosters confidence and
certification.

CONCEPTUAL FRAMEWORK

Designing an effective and adaptable framework that emulates human
driving behavior in HITL simulators requires the integration of multiple
interdisciplinary elements spanning artificial intelligence, behavioral science,
simulation technology, and automotive engineering. Our proposed
conceptual framework focuses on providing a generic, scalable approach to
creating interpretable and explainable models of driver behavior in mixed
traffic, with the goal of improving training and validation of autonomous
driving systems, as shown in Figure 2.

The process commences with Step 1 – the targeted acquisition of
comprehensive data for both training and validation purposes (T&V-Data).
The T&V-Data are curated to capture realistic driving behaviors and
scenarios, ensuring a diverse and representative foundation for model
learning. This data encapsulation includes vehicle kinematics, environmental
context, and driver intentions, all tailored to train XAI models that predict
HDV trajectories with high fidelity.

Once an initial XAI model has been trained, its functionality must
be rigorously validated. The validation process (depicted in Step 2) is
characterized by the evaluation of XAI outputs against existing scenario
simulation data. Specifically, scenario input data are fed into the XAI model,
which then produces predictions. These outputs are compared with those
from a validated closed-scenario model. An essential aspect of this validation
is the pass/fail assessment, determining whether the XAI system meets
performance benchmarks set by existing validated models. Iterative feedback
is incorporated by going back to Step 1, refining the XAI as necessary until
it passes these validation tests.

A fundamental goal of XAI is to provide transparent and interpretable
outputs. Step 3 of the process is dedicated to the analysis of the XAI
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system’s explainability. One primary approach is the extraction of heat
maps, visualizations that highlight regions or features most responsible
for the model’s decisions. These heatmaps are then subjected to human
analysis, allowing subject matter experts to interpret and confirm the
model’s reasoning. Additionally, the methodology incorporates correlation
techniques on pre-categorized input data, revealing relationships between
input features and model outputs. This dual approach facilitates both
quantitative and qualitative evaluations of the XAI’s interpretability, ensuring
that its decision-making processes can be understood and trusted by human
users.

Figure 2: Framework based on a HITL test bench to realistically model human driving
behavior in simulation-based traffic scenarios. The aim is to use real driving data
including information about semantical meaning from human drivers to learn their
behavior and transfer it into AI-based models in order to subsequently use them in
driving simulations for mixed traffic scenarios in a reproducible and interpretable
manner.

The final stage involves deployment and continual validation of the
XAI system within simulated environments. In Step 4.a, the XAI model is
integrated into a simulation toolset, such as CARLA (Dosovitskiy et al.,
2017), embedding it within realistic operational scenarios for application
of different scenarios within AV testing. Step 4.b then focuses on the
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systematic validation of the XAI within the simulation environment. Here,
the XAI continues to generate heat maps which undergo human analysis,
ensuring that explainability is maintained as the system encounters diverse
and unforeseen scenarios. Furthermore, this information helps the users to
identify and test critical scenarios where AVs and the XAI model interact
together.

Across each stage, there is a strong emphasis on the feedback loop between
validation and refinement. Each test result informs further development,
with heat maps and human interpretability analyses guiding targeted
improvements. This structured, iterative approach ensures that the resultant
XAI system for HDV trajectory prediction is not only high-performing
but also robustly explainable, laying the groundwork for trustworthy AI
deployment in complex transportation domains.

Data Acquisition in Driving Simulators

A comprehensive methodology is necessary for studying human driving
behavior under different conditions, as shown in Figure 3. This methodology
involves conducting a human subject study using driving simulators to
capture and analyze driving styles.

The study will use a mixed methods approach, integrating quantitative
simulator data with self-report measures to provide a holistic view of driving
style. The methodology is divided into several phases: pre-experimental self-
assessments, experimental task design (including simulator training), data
collection, and post-session evaluation. Participants are recruited to represent
a diverse cross-section.

Figure 3: Step 1 (a, b and c) of our approach in detail including pre-, peri- and post-
experimental data for model development.

A distinctive feature of our methodology is that the initial development
of the driving model is carried out using large-scale open datasets (not
shown in Figure). This foundational training equips the model with a
broad, generalized ability to understand and replicate standard driving
behavior across diverse scenarios. In subsequent steps, the model is fine-tuned
with the specific datasets curated from the experimental process, thereby
personalizing its performance to reflect individual or group-specific driving
patterns.
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Prior to the simulator session, participants complete the Multidimensional
Driving Style Inventory (MDSI) (Taubman-Ben-Ari et al., 2004) or a similar
validated instrument at home, which assesses individual tendencies such as
aggressiveness, cautiousness, and anxiety while driving. Simulator training
is critical to mitigate learning effects, familiarize participants with simulator
controls, and reduce simulator sickness. Each participant takes a preliminary
run in the simulator, usually on a straightforward or simplified route,
to acclimate to the visual, auditory, and haptic feedback. The duration
varies, but typically ranges from 10 to 30 minutes, depending on individual
adaptation. After training, participants are surveyed on their comfort
and understanding of the simulator interface and vehicle dynamics, and
additional training is provided if necessary.

The main experimental session consists of driving tasks designed to
produce naturalistic driving behavior. Scenarios include selected situations
with varying traffic densities and environmental conditions such as night and
rain. Environmental factors such as weather, lighting, and traffic behavior
are manipulated to observe their influence on driving style. Each participant
completes multiple runs, with conditions counterbalanced to minimize order
effects. Runs are separated by short rest periods to reduce fatigue (unless
some fatigue is desired) and simulator adaptation bias. Data collection
includes objective measures such as vehicle dynamics (speed, acceleration,
braking patterns, steering input, lane positioning, and following distance),
which are continuously recorded by the simulator’s integrated measurement
systems. Subjective measures include post-drive interviews where participants
provide qualitative feedback on their experience, perceived realism, and any
difficulties encountered. Objective driving metrics are later compared to
self-reported driving style scores to examine predictive validity.

The fused dataset including pre-, peri- and post-experimental data
undergoes in-depth analysis of the driving data. This is done by using
clustering mechanisms together with XAI methods for clusters (as shown
in the state-of-the-art chapter) in combination with semantic information
from assessments and interviews. This ensures systematic capturing of
inter-individual variability and enables downstream creation of specific
datasets that reflect particular driver profiles or styles, supporting nuanced
modeling efforts.

This methodology provides a robust framework for capturing and
analyzing driving style in a simulator environment, combining objective
behavioral data with subjective self-reports.

CONCLUSION

This paper presents a conceptual framework for AI-based explainable
driver behavior modeling in Human-in-the-Loop simulators. By combining
psychological insights, advanced clustering, and explainable AI techniques,
the framework addresses the challenges of adaptability, generalization, and
transparency in mixed-traffic scenarios. It leverages multi-source driving data
to create interpretable and personalized driver models, improving the realism
and safety of autonomous driving simulations.

The use of heatmaps and correlation analyses enhances trust and
regulatory acceptance by making AI decisions understandable to human
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experts. Integrating the models into simulation environments allows
continuous validation and refinement, supporting robust, human-centric
autonomous vehicle development.
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