
Applied Human Factors and Ergonomics (AHFE2025), Vol. 199, 2025, 904–914

https://doi.org/10.54941/ahfe1006903

Creating a Lightweight Unity Interaction
Package
Lisa Rebenitsch1, Muhammad Shaharyar1, Minati Alphonso2,
and Diego Akantuge1

1South Dakota School of Mines, Rapid City, SD 57701, USA
2Phase Technologies, Rapid City, SD 57701, USA

ABSTRACT

This project proposes a lightweight interaction system for VR in the Unity game
engine. The Unity VR start up project is ∼2GB in size upon creation, while our proposed
system is currently ∼350MB. It also shrink the needed components by half, while still
support most of the same functionality of Unity XR Toolkit. The new system is designed
with the goals of supporting non-coders while allowing extensions for coders and
following well established GUI event paradigms for familiarity. The project currently
focuses on grab base interactions and navigation.

Keywords: Virtual reality, Interface development, Toolkit, Unity, Systems engineering

INTRODUCTION

In a virtual reality (VR) research lab, ramping up students in VR
code development is time consuming. Personal experience estimates that
students with only basic graphical user interface (GUI) backgrounds require
2–3 months of training before actual tasks can begin. This is partially due to
a change in coding environment, but also due to the lack of basic, pre-made,
interactions in VR engines that developers expect from GUI frameworks. As
such, a support framework was begun where repeated needs occurred during
work on other projects.

Unity, a game engine that supports VR, had officially released a VR
interaction toolkit after this work had been in progress for nearly 2 years.
However, the Unity framework had some notable issues for development.
The first issue is that the framework is large. The Unity VR start up project
is ∼2GB in size upon creation. Next, there were a few lab tasks that were not
well supported with Unity’s interaction framework such as mixed Oculus and
Vive hardware.

When the lab’s interaction framework began, there was a clear goal of
balancing ease of use for non-coders while making extensions easy. This
meant interactions were focused on, “selecting what responses this grab can
do.” If another response is needed, a new class is made and added to the
responses, ideally, with as few lines of code as possible.

There are a few notable sources of challenges this project attempts to
overcome. Unity, Unreal, and Godot all use an entity-component structure

© 2025. Published by AHFE Open Access. All rights reserved. 904

https://doi.org/10.54941/ahfe1006903


Creating a Lightweight Unity Interaction Package 905

that lends itself to monolithic classes or piecemeal coding. To compensate,
many of the components needed more advanced editor control.

Many of the techniques were also simplified to integrate into a local
VR Development course, and later into an associated book. Success of the
techniques was studied in class with IRB approval. Some students attempted
to use the Unity version rather than the provided framework which allowed
for some cross comparison of use. Exam results on using the framework, plus
extending the framework, showed promising results.

MOTIVATION AND BACKGROUND

Desktop and mobile platforms have well-established interaction conventions,
such as button clicks. In contrast, VR has yet to standardize its
interactionmethods. Consider the button click—one of themost fundamental
interactions in a desktop application. Typically, this involves registering a
callback for the button and handling the resulting action.

In VR, grabbing is one of the most fundamental interactions. Coming
from a traditional GUI paradigm, a developer might expect a similar process:
register for a grab event, then respond to it. One would reasonably assume
that detecting such an event would be handled by the engine, and that
common tasks like placing an item into the user’s hand would be pre-
implemented. Unfortunately, this is not the case. Even something as basic as
detecting a button press has undergone multiple changes over recent years,
leading to inconsistent and unreliable support. There is still no standardized
grab event that developers can rely on.

Creating a robust GUI framework for VR is not a trivial task. Previous
students in the author’s lab experimented with various toolkits to handle
grab events and menus. Some early efforts used the now-outdated VR Toolkit
(Wikipedia, 2025). However, any project built with that toolkit typically
broke within six months due to a lack of long-term support. Newer toolkits,
such as OpenXR (OpenXR Toolkit, 2023) and the SteamVR Toolkit (Valve
Corporation, 2024) also tended to break within a year. Meta, in particular,
has made this landscape more difficult by restricting interoperability through
its OVR plugin. Since the lab needs to support a variety of systems—not just
Oculus—a generic and durable toolkit was necessary.

Development of the lab’s toolkit began before Unity’s XR Toolkit was out
of beta or widely available. The goals of the framework were threefold:

1. Mimic the familiar desktop GUI development paradigm
2. Be usable by non-coders for common interactions
3. Remain highly extensible for developers by focusing on separation of

concerns while still providing defaults for very common tasks.

As a result, one of the core design principles of the toolkit was to focus on
“What does the user want to do?” rather than how to do it.

When Unity’s XR Toolkit was officially released, the lab paused
development to evaluate whether it could meet their needs. However, several
major shortcomings were identified early on, leading to the decision to
continue with in-house development. One of the largest issues was simply



906 Rebenitsch et al.

the size. The official Unity VR template using XR Toolkit was 2 GB on first
run—a significant issue given that many students’ computers were already
running low on memory. In contrast, the lab’s current solution was roughly
350 MB. There was also the level of complexity of setup up. Just supporting
a user’s right hand to both poke buttons and teleport via the XR Toolkit
involves 13 separate components spread across 6 Game Objects. Thus, the
lab framework was still deemed necessary.

OUR FRAMEWORK: CORE INTERACTION GROUPS

For consistency and brevity, Unity’s XR Toolkit (base structure is available
here: (Unity, 2025)) and their VR template will be referenced as the “XR
Toolkit.” The lab system discussed here will be the “lab framework.”

Figure 1: Figure class diagram of core components. Top: navigation. Bottom:
interaction.

The lab framework began by asking a fundamental question: What are
the key groups of tasks users typically need to achieve VR interaction? This
led to the identification of four core categories. 1) Processing and handling
grab events 2) Grab responses, 3) Navigation, and 4) Menus. Menus are
still under developments, so our class structure diagram shown in Figure 1
excludes Menus.

CONTROLLER HANDLING AND EVENT PROCESSING

One of the most fundamental components of any VR interaction system is
how it handles the controllers. For simplicity, physically tracked hands will
be considered another controller type. While VR controllers usually include



Creating a Lightweight Unity Interaction Package 907

the standard buttons found on gamepads, they also support more complex
interaction types—such as proximity-based events (e.g., tap or hover), grab
events for picking up items, and selection events often used in menus.

Since one of the lab framework’s primary goals was to offer an approach
similar to desktop GUI button events, the controller system needed to support
callback events across various interaction stages. In a standard desktop
GUI, for example, a button might trigger OnEnter, OnExit, and OnClick
events. In VR, we aimed for a similar structure, with our Controller Grab
Event component, and supported events such as On Register\On Deregister,
Grab\Release Event, and Hover.

The XRToolkit component most similar to our systemwould be theDirect
Interactor. However, by making Controller Grab Event focus largely on
just events, it becomes much smaller as shown below in Figure 2. The lab
framework is admittedly grab-focused, and very little else is added to the
controller processing—aside from assigning a hand reference and a distance
indicating when an object should be forcibly to be deregistered.

Figure 2: Controller processing.

Consider the XR Tooklit’sXR Poke Interactor as a contrast. In addition to
supporting callbacks, it also handles hand size definitions, depth thresholds
for poking, and more. This level of responsibility begins to pollute the class’s
purpose.

To support customization and extension, several of the processing
functions in Controller Grab Event are marked as overridable (e.g.,
GetGrabCallbackSet(), CanGrab(), etc.). This allows developers to
implement more complex behavior where needed. For example, a specific
application may want to forward events to multiple objects within range.
Overriding the GetGrabCallbackSet() does not violate the class’s core
purpose, as it simply forwards events, just to a broader set of targets. The
XR Toolkit has similar functionality with Interactable Filters.

Hand Interface and Separation of Concerns

One reason our processing component remains relatively small is that we
sectioned out the hand into its own interface. The IHand interface was



908 Rebenitsch et al.

designed to act as a data source responsible for determining and managing
whether an item can be placed in the hand.

The Controller Grab Event communicates with the hand interface through
a core set of methods, such as: CanHold, PutInHand, Drop, etc. which
informs the grabbing or releasing events. At present, only a simple single-
object hand implementation exists. This is also where poke functionality
would be placed, if implemented.

INTERACTION RESPONSES AND SEPARATION OF BEHAVIOR

In the XR Toolkit, interactions triggered by Interactors (or controllers)
are handled through Interactables. These Interactables are used for both
navigation and object grabbing. In the lab framework, however, we
considered these functionalities. Given that one of our core goals was to make
the system accessible to non-coders, we designed this group of functionality
with an emphasis on what the user wants to happen, rather than how it
should happen.

For example:

• Want a hover effect? Just add a hover response.
• Want an object to disappear when grabbed? Add a disappear-on-grab

response.

Our grab responses are built on an interface called IGrabResponse, though
the primary class used in practice is aGrabResponseBuilder component. This
builder was designed to be as simple and declarative as possible by adding
pre-made grab responses to a list. All registered responses are then called
sequentially in response to controller events. Currently, registration is based
on proximity triggers: when an object enters a controller’s trigger zone, it is
added to the callback list; when it leaves, it is removed.

Figure 3: Grab interactions.

Because certain responses (e.g., destroying an object) can interfere with
later ones, each response is given a priority, a technique used in other GUI
libraries. Additionally, responses can return true or false to indicate whether



Creating a Lightweight Unity Interaction Package 909

the event has been consumed—preventing it from being forwarded to the
next response in the list.

This significantly simplifies individual components. Consider grabbing as
shown in Figure 3, below. The XR Toolkit XR Grab Interactable component
attempts to handle all possible grab behaviors within a single monolithic
component. If hover indication is desired, this requires multiple extra
components and setup involving Affordances. In contrast, our framework
state if you want grabbing and hovers, simply add both to this list as shown
in Figure 3, in the bottom right.

Two-Handed Interaction Support

Our framework also supports two-handed interaction, allowing both one-
handed and two-handed grabs. This is implemented via a special grab
response called Double Grab Response that add component during run time
to forwards the grab events to the core builder. Currently, one pre-made
two-handed interaction is included in the framework: a 6-degree-of-freedom
(6DoF) manipulation, where the object is aligned and positioned dynamically
between the two hands.

If both hands are active and interacting with the same object, the two-
handed grab response takes control, overriding the one-handed behavior.
This is handled using the existing priority system, where the two-handed
response signals that event processing should stop at its stage—effectively
preventing one-handed responses from executing.

NAVIGATION SYSTEM DESIGN (UNITY INTERACTOR WITH
PROVIDER)

In our framework, navigation is built around the standard components
commonly used in VR environments. The most prevalent navigation methods
in VR games are teleportation and steering (or smooth locomotion), where
the user slides through the environment

When analysing these systems, we can break navigation down into these
parts:

1. The VR body – The game objects involved in navigation
2. Animations – Visual effects for teleportation or steering
3. Rules – Define where the user is allowed or restricted from moving
4. Activation control – Determines whether movement is triggered or not
5. A way for these components to communicate.

While functional with the same parts, the XR Toolkit system does not
align with our design philosophy of “tell the system what you want to do,
not how.” Moreover, the Character Controller component being used as the
rules was very problematic as it assumes the camera and the body are aligned.
In VR the tracking center and the camera can easily be over 10 feet resulting
in sever clipping.

Our Approach: A Central Navigation Hub

To better support this philosophy, our framework introduces a core
navigation hub component called VR Navigation that acts as a mediator



910 Rebenitsch et al.

between the various components (rules, animations, input). The lab
framework provides a custom inspector, allowing these components to be
managed from a single, cohesive interface.

Figure 4: VR navigation communication hub, and associated components.

From this inspector, users can either, 1) select common pre-made
components (e.g., snap-turning, teleport), or 2) link to custom components
that provide the same functionality as demonstrated in Figure 4, left,
movement type. So, while we still use multiple underlying components, only
one inspector needs to be checked to view the navigation configuration as
demonstrated in Figure 4, right.

Some components, such as the rules, are separated by convention. For
example, the movement rules component is separate because systems like
Unity’s Character Controller are typically separate objects. To enable these
components to work together seamlessly, we defined a series of interfaces:

• INavRules – Validates whether a proposed movement is allowed.
• IMovementAnimation – Handles different phases of a movement

animation, including start, animation, and end phases.
• INavActivation – Manages input activation, selection, and cancellation.
• ICommand – An optional interface to support connection into the VR

Navigation core component, and provide auto enrollment by searching.

This results in the following interaction model between components:

Figure 5: Navigation control flow diagram.



Creating a Lightweight Unity Interaction Package 911

MENUS

The XR Toolkit currently offers more thorough support for menus than
our framework. However, it requires multiple interdependent components to
function correctly, and these must be maintained in parallel with the desktop
GUI system, which adds complexity.

Evaluation of these components raises concerns about long-term
maintainability. For example, the Tracked Device Graphic Raycaster includes
hardcoded cases for certain XR Toolkit interactors. This tight coupling
implies that extending ormodifying interaction logic in the future could break
compatibility with XR menus.

Due to these concerns, the lab framework intends a future implementation.

INITIAL SETUP FOR NEW USERS

The lab aimed to make the initial setup process quick and straightforward
for new users. While the lab currently uses an internal Unity template
(which will be published publicly in the future), if starting from scratch, the
recommended process would be:

1. Download the 3D Built-in (for size) Rendering Pipeline Template.
2. Add the XR Interaction Package
3. Create an XR Rig: The lab provides its own prefab for this, structured

similarly to Unity’s default as shown in Figure 6
4. Add a Player Input Component: Attach the Player Input component to

the XR Rig to handle input mapping.

Figure 6: Starting XR Rig.

Then, the scene is ready for interactions and navigation.

SUPPORTING GRAB INTERACTIONS

To enable general grab interactions, follow these steps:

1. Add the Process Controllers Component: Attach this component to
both hand controllers and configure the actions as preferred (shown in
Figure 2).



912 Rebenitsch et al.

2. Make Objects Grabbable: For each GameObject you want to be
grabbable, add aGrab Effect Builder component and specify the desired
grab responses. (shown in Figure 3).

At this point, the ability to pick up and interact with objects is
supported.

SETTING UP NAVIGATION

To enable navigation in your scene, complete the following:

1. Add a Navigation Component: Attach to GameObject.
2. Assign References: Set the XR Rig’s feet and the Main Camera

(representing the player’s head) in the Navigation component to indicate
the player’s body.

3. Select Animation and Selection Options: Choose the desired animation
and selection behaviors from the provided list.

4. Add a Rules Component: Attach this to the same GameObject to define
where navigation is allowed.

5. Add a Command Component: This component handles
activating and deactivating navigation based on input
commands.

When completed, it should be similar to what is shown in Figure 4, and
navigation is now ready.

HOW TO EXTEND

Adding a new response is a three-step process. First, the developer has
to make the script of that particular response. Second, add that response
enum in the GrabResponseType.cs. Lastly, add that response in the editor
in GrabResponseBuilder.cs. New movement animation script work very
similarly.

For example, if you want to play sound on grab. First create the sound
play script derived from GrabResponse. Only the OnGrab event needs to be
overridden as shown Figure 6 below.

Figure 7: Example grab response for playing a sound.



Creating a Lightweight Unity Interaction Package 913

Second, add the enum in the GrabResponseType.cs as highlighted below.

Figure 8: Example grab response integration into the builder.

Finally, add the sound response in the using the Builder component in the
Unity editor on which you want to play the sound during grab as shown
below.

Figure 9: Sound response result in the inspector.

APPLICATION IN A CLASSROOM

The principal investigator (PI) authored a textbook (Rebenitsch,
Rebenitsch& Loveland, 2025) and ran a course that used a simplified version
of our custom framework. This course focused on teaching VR development
fundamentals and deliberately avoided Unity’s Interaction Toolkit as one key
goal was to enable students to create their own interaction systems, making
it easier to transition between platforms like Unity and Unreal. The main
differences in the simplified version included the removal of the custom editor
window and the use of multiple components instead of a factory builder
pattern. Despite these changes, the core paradigms remained the same, and
the controller script purpose was largely unchanged.

Students had several opportunities to demonstrate success and preference
for this toolkit over Unity’s. For example, in the first practical exams that
focused on response handling (“effects” in the course), ∼80% of the students
who used the custom toolkit succeeded in a creating a new response in



914 Rebenitsch et al.

about 20 minutes. In a later practical exam focused on navigation, all except
two students were able setup teleporting although there was issue on rule
application on banned locations.

In a semester-long project (some of which, with student permission,
are available here (Rebenitsch, May)), a few students attempted to learn
Unity’s XR toolkit—though it was not prohibited—none succeeded in fully
implementing the required tasks. In contrast, all except two students who
used the custom toolkit successfully completed their projects, and one of
those needed a advance 2-handed grab functionality to succeed.

CONCLUSION

Unity’s new system is quite large and duplicates several existing features. It
also suffers from blurred boundaries between responsibilities and lacks clear
explanations of how different components interact, making it difficult to use.
Just supporting a user’s right hand to both poke buttons and teleport via the
XR Toolkit involves 13 separate components spread across 6 Game Objects.

The SDSMTVR lab began developing its own toolkit before Unity’s toolkit
was out of beta. The focus was on usability for non-coders by prioritizing
what the user wants to do, while still providing extensibility for coders.
Although there is some overlap with Unity’s toolkit, our framework has a
much flatter structure and clearer connections between components.

Currently, the library is being updated for Unity 6 and will be released
once this process is complete. Several features—such as improved menu and
inventory support, inventory-style hand, joint-based grabs with animation—
are still missing but are planned for future integration.

ACKNOWLEDGMENT

The authors would like to acknowledge the several master students in the lab
that contributed to various pieces via their own projects.
AI notice: AI was used only for proofreading.

REFERENCES
OpenXR Toolkit. (2023, 3). Retrieved 10 2, 2025, from https://mbucchia.github.io/

OpenXR-Toolkit.
Rebenitsch, L. (May, 2025). VR Textbook and Course. Retrieved

from https://sites.google.com/sdsmt.edu/south-dakota-mines-rebenitsch/
vr-textbook-and-course?authuser=0.

Rebenitsch, L., R. L., & Loveland, R. (2025). A Practical Introduction to Virtual
Reality: From Concepts to Executables.Morgan Kaufmann.

Unity. (2025). XR interaction Toolkit. Retrieved from Unity Manual: https://
docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/
extending-xri.html.

Valve Corporation. (2024, 1 17). SteamVR Plugin. (Steam) Retrieved 10
2, 2025, from https://assetstore.unity.com/packages/tools/integration/steamvr-
plugin-32647.

Wikipedia. (2025, 4 2). OpenVR. (Wikipedia) Retrieved 10 2, 2025, from https://
en.wikipedia.org/wiki/OpenVR.


	Creating a Lightweight Unity Interaction Package
	INTRODUCTION
	MOTIVATION AND BACKGROUND
	OUR FRAMEWORK: CORE INTERACTION GROUPS
	CONTROLLER HANDLING AND EVENT PROCESSING
	Hand Interface and Separation of Concerns

	INTERACTION RESPONSES AND SEPARATION OF BEHAVIOR 
	Two-Handed Interaction Support

	NAVIGATION SYSTEM DESIGN (UNITY INTERACTOR WITH PROVIDER)
	Our Approach: A Central Navigation Hub

	MENUS
	INITIAL SETUP FOR NEW USERS
	SUPPORTING GRAB INTERACTIONS
	SETTING UP NAVIGATION
	HOW TO EXTEND
	APPLICATION IN A CLASSROOM
	CONCLUSION
	ACKNOWLEDGMENT


