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ABSTRACT

Commercial motor vehicles (CMVs) are vital to national logistics but remain disproportionately
involved in high-severity crashes, with human factors such as fatigue, distraction, delayed
hazard recognition, and cognitive overload contributing significantly to crash risk. Despite
advancements in regulation and vehicle technologies, conventional training methods still fall
short in preparing CMV drivers for unpredictable, high-risk environments. These approaches
often rely on passive instruction or low-fidelity simulation, offering limited realism, adaptability,
and behavioral insight. As a result, they struggle to address evolving hazards, monitor
physiological states such as fatigue or attentional lapses, support effective skill transfer, or
replicate critical scenarios for evaluation and intervention. To address these gaps, we present
SMART VR, a scalable and modular virtual reality framework for CMV safety training and human
factors research. Built on the CARLA simulator and Unreal Engine, SMART VR provides a
unified, high-fidelity platform that integrates immersive simulation, Al-driven hazard generation,
and physiological monitoring, supporting deployment through VR headsets and full-scale
cockpit hardware with force-feedback steering and operational controls. A configurable scenario
engine dynamically injects hazards, from lane incursions, visibility loss, erratic traffic behavior,
and auditory distractions, based on predefined or adaptive logic, with each event precisely
time-aligned with vehicle telemetry (speed, braking, steering, lane position) and real-time
physiological monitoring via wearable sensors capturing eye gaze, heart rate variability, and
electrodermal activity. These synchronized data streams enable multidimensional assessments
of driver state, including attentional focus, cognitive workload, and stress response, addressing a
critical gap in conventional training systems. The framework’s modular design enables the import
of custom road environments, integration with external tools such as decision-support systems,
and development of targeted training protocols. This flexibility supports the replication of high-
risk operational scenarios under controlled conditions and enables repeatable, simulations
for validating safety interventions, driver-assist technologies, and human-machine interface
designs, advancing CMV training, behavioral evaluation, and intelligent transportation systems.
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INTRODUCTION

Commercial motor vehicles (CMVs) play a critical role in national and
global logistics, yet they remain overrepresented in high-severity roadway
incidents. In the United States alone, CMVs were involved in 4,444 fatal
crashes in a single year, contributing to an estimated $55.2billion in
economic losses (FMCSA,2020; NHTSA,2023). Approximately 92% of
these incidents are attributed to human factors such as fatigue, distraction,
delayed hazard recognition, and cognitive overload (FMCSA,2023a). Despite
continuous advances in vehicle design, automation, and regulatory oversight,
conventional training programs have not kept pace with the cognitive
and perceptual demands of modern driving. The persistent prevalence of
human error underscores the urgent need for immersive, adaptive, and
data-driven training solutions capable of replicating the complexity and
unpredictability of real-world operations while providing objective insights
into driver behavior and cognitive state.

Current CMV training methods remain inadequate for preparing
operators to manage these challenges. Conventional approaches, such as
classroom instruction, static simulation, and limited on-road supervision
tend to rely on passive learning and provide minimal exposure to
high-risk scenarios, resulting in weak skill transfer and underdeveloped
hazard-response capabilities (Mehler etal.,2016; Wintersberger etal.,2019).
Moreover, existing systems lack real-time physiological monitoring and
synchronized behavioral data, limiting analysis of fatigue, stress, and
attentional lapses (Zhangetal., 2022). Overall, CMV training platforms
exhibit four critical deficiencies: limited scenario adaptability, absence of
integrated physiological monitoring, insufficient realism in vehicle and
environmental dynamics, and lack of modular frameworks for custom
environment creation and external tool integration.

Several efforts have attempted to address these challenges through virtual
reality (VR) technologies, which have emerged as promising tools for high-
risk skill acquisition. VR enables safe exposure to dangerous scenarios and
supports controlled study of driver behavior. Research has demonstrated
VR’s potential to improve hazard perception and decision-making (Horswill
etal., 2015). However, current CMV-focused VR systems remain constrained
by limited scenario customization, insufficient integration of physiological
feedback, and a lack of realism in both vehicle dynamics and environmental
interaction (Kouroussis et al., 2021; Riegler et al., 2022). These systems
often rely on pre-scripted scenarios that limit adaptability and behavioral
authenticity, making it difficult to empirically validate training outcomes
or study driver performance under cognitive stress. Thus, despite recent
advances in simulation and VR technologies, there remains a clear need for
a high-fidelity, adaptive, and data-synchronized platform tailored to CMV
safety, such as the SMART VR framework proposed in this study.

To address these challenges, we introduce SMART VR, a simulation-based
framework designed to enhance commercial motor vehicle (CMV) safety
through immersive and adaptive virtual environments. Developed using the
CARLA simulator and Unreal Engine, SMART VR enables the injection
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of contextual hazards from sudden weather changes, equipment failures,
and unpredictable traffic behaviors, while capturing synchronized streams of
vehicle telemetry and physiological data. To support region-specific training
and evaluation, the system integrates with RoadRunner for the creation
of custom roadway environments. Its modular architecture facilitates the
development of targeted interventions, replication of high-risk operational
scenarios, and detailed analysis of driver behavior and state. By uniting
immersive simulation, Al-driven hazard scripting, and real-time physiological
monitoring, SMART VR addresses critical limitations in existing training
systems and contributes to improved safety outcomes in commercial vehicle
operations.

LITERATURE REVIEW

The commercial driver training industry has long relied on a triad of
methods: theoretical instruction, practical skills testing on a closed range, and
supervised road driving. While this structure is well-established, its efficacy
in cultivating robust situational awareness and hazard mitigation skills is
questionable. Classroom learning is often passive and decontextualized,
failing to engage the cognitive processes required for real-time decision-
making (Hajian, 2019). On-range and on-road training, though practical,
are inherently limited in their ability to safely expose trainees to critical,
high-stakes scenarios such as jackknifing on ice, sudden tire blowouts, or
aggressive behavior from other road users. This creates a “competency
ceiling,” where drivers are trained to handle common situations but remain
vulnerable to rare, high-consequence events.

Furthermore, the assessment of driver performance in these settings is
often subjective, relying on an instructor’s visual observation. This method
lacks the granular, quantitative data needed to diagnose subtle but dangerous
behaviors, such as delayed braking onset or inadequate visual scanning
patterns (Fisher et al., 2011). The transfer of training, the application of
learned skills to novel on-the-job situations is therefore weak, a problem that
has been documented across various domains of skill acquisition (Baldwin &
Ford, 1988).

Virtual Reality in Driver Training

Driving simulators offer a compelling solution to many of these limitations
by providing a safe environment for experiencing and learning from failures,
allowing for precise repetition of scenarios, and enabling the collection of
rich behavioral data (Lee Bisantz et al., 2013). Studies have shown that
simulator training can lead to improvements in specific skills, such as hazard
perception (Horswill et al., 2015). However, the effectiveness of a simulator
is contingent on its fidelity and adaptability. Low-fidelity simulators with
simplistic graphics and limited physical feedback can fail to induce a sufficient
sense of presence, leading to a lack of behavioral validity—trainees may not
behave in the simulator as they would in a real vehicle (Mullen et al., 2011).

More critically, most simulators, even high-fidelity ones, rely on pre-
scripted scenarios. Trainees can quickly learn the “script,” leading to
improved performance in the simulator that does not generalize to the
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unpredictable real world. This predictability undermines the development
of true situational awareness and adaptive decision-making skills (de Winter
et al., 2012).

Physiological Monitoring in Driving Research

Human factors research has increasingly turned to physiological measures as
objective, continuous, and non-invasive indicators of driver state. Key metrics
include eye tracking, which provides direct insight into visual attention and
hazard detection through fixation duration and saccadic movements (Recarte
& Nunes, 2003); heart rate variability (HRV), a well-validated measure of
autonomic nervous system activity strongly associated with mental fatigue,
high workload, and stress (Mehler et al., 2009); and electrodermal activity
(EDA), which measures changes in skin conductivity due to sweat gland
activity and serves as a sensitive, real-time indicator of emotional arousal
and stress (Healey & Picard, 2005).

Integrating these physiological measures with driving performance data
offers a holistic view of the driver-vehicle interaction system, allowing
researchers and trainers to move beyond what the driver did (e.g., braked
late) to understand why they did it (e.g., due to a fatigue-induced
attentional lapse). Despite its proven value, the integration of comprehensive
physiological monitoring into mainstream CMYV training simulators remains
rare.

PROPOSED METHODOLOGY

THE SMART VR FRAMEWORK: SYSTEM ARCHITECTURE

The SMART VR framework is composed of four integrated layers:
simulation core, experiment control, hardware and sensor integration,
and synchronized data output. Figure 1 illustrates the complete system
architecture, showing the flow of information from simulation engines
through control software to hardware interfaces and finally to synchronized
data streams for analysis.

The simulation core integrates CARLA (v0.9.13+) for vehicle physics,
traffic control, and eight base town environments with Unreal Engine
for photorealistic rendering and dynamic time-of-day and weather control
(Dosovitskiy et al., 2017). RoadRunner enables the import and customization
of real-world road environments, supporting region-specific training
scenarios (MathWorks, 2023). The Al hazard engine allows for scripted
and adaptive injection of hazards using CSV-based logic, enabling precise
experimental control while maintaining unpredictability for the driver.

In the experiment control layer, WorldViz Vizard 8.x—a Python-based
VR application development toolkit and SightLab VR Pro 2 manage
synchronization of data streams, experimental timing, and session replay
capabilities. This layer also enables advanced gaze analytics, including
fixation analysis, heat map visualization, and dwell time metrics, which are
critical for understanding attentional allocation during hazardous events.
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Figure 1: SMART VR Framework Architecture showing the integration of simulation
core (CARLA, Unreal Engine, RoadRunner, Al Hazard Engine), experiment control layer
(Vizard and SightLab), hardware and sensor layer (displays, cockpit, physiological
sensors, computing), and synchronized data output (vehicle telemetry, eye tracking,
physiological data, event logs.

Hardware Configuration

The SMART VR framework deploys on a professional-grade simulator
platform designed for research and training applications (Figure 2). Each
station features a full-scale commercial vehicle cockpit with adjustable
seating, mounted on a reinforced sim racing frame. The system supports two
display modalities to accommodate different research requirements and user
preferences.

The panoramic multi-display setup consists of three 32-inch curved
displays arranged in a wraparound configuration, providing an immersive
180° field of view while minimizing VR-induced simulator sickness. This
configuration is ideal for extended training sessions and users sensitive to
head-mounted displays. Alternatively, the VR head-mounted display option
utilizes the HTC Vive Focus Vision with integrated eye tracking, offering fully
immersive 360° stereoscopic 3D visualization. This modality enables natural
head movements for mirror checks and situational awareness training—
critical skills for CMV operators.

The cockpit integrates a direct drive steering wheel system providing
realistic force feedback, essential for conveying road surface conditions,
vehicle dynamics, and emergency maneuvers such as sudden lane departures
or loss of traction. A professional-grade pedal system includes separate
accelerator, brake, and clutch pedals, positioned to replicate authentic
commercial vehicle ergonomics. The adjustable racing seat allows for proper
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driver positioning and comfort during extended evaluation sessions, which is
critical for fatigue studies where session duration may exceed 60 minutes.

Figure 2: Physical layout of the SMART VR simulator station featuring three 32-inch
wraparound displays providing 180° field of view, full-scale CMV cockpit with direct
drive force-feedback steering wheel, professional pedal system, and ergonomically
adjustable racing seat.

Computing hardware consists of high-performance tower PCs featuring
Intel processors and NVIDIA GPUs, capable of maintaining target frame
rates of 90 FPS in VR mode and 60 FPS in multi-display configuration.
This performance is essential for maintaining immersion and preventing
motion-to-photon latency that can induce simulator sickness.

Physiological Monitoring and Data Synchronization

SMART VR incorporates the Biopac MP-200 Physiological Data Acquisition
Suite for comprehensive biometric monitoring. The system captures three
primary physiological signals: (1) electrocardiography (ECG) for heart rate
and HRV analysis, providing insight into cognitive workload and stress
response; (2) electrodermal activity (EDA/GSR) sensors measuring skin
conductance levels and responses, indicating emotional arousal and acute
stress; and (3) respiration (RSP) monitoring for respiratory rate and depth,
which can indicate anxiety or fatigue states.

Eye tracking is integrated directly into the HTC Vive Focus Vision headset,
capturing gaze position, fixation duration, saccadic movements, and pupil
diameter at high temporal resolution. The WorldViz SightLab software
processes this data in real-time to generate gaze path visualizations, fixation
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heat maps, and dwell time analyses—critical metrics for assessing hazard
perception and visual attention allocation.

All data streams are synchronized through WorldViz Vizard’s integrated
data collection framework using a unified timestamp system with millisecond
precision. Vehicle telemetry from CARLA—including speed, acceleration,
braking force, steering angle and rate, lane position, heading, and
trajectory—is logged at sub-second intervals (typically 10-60 Hz). This
temporal alignment enables researchers to correlate specific driver behaviors
(e.g., late braking) with physiological states (e.g., decreased HRV indicating
fatigue) and visual attention patterns (e.g., gaze fixated away from hazard
location) at the exact moment of hazard presentation.

Data are exported in structured CSV/Excel format with aligned
timestamps, facilitating post-hoc analysis using standard statistical software.
Additionally, SightLab’s interactive session replay capability allows
researchers to visualize synchronized behavioral and physiological data
streams alongside 3D scenario playback, enabling qualitative assessment and
identification of critical incidents.

Al-Driven Hazard Scenario Generation

SMART VR’s scenario engine operates on two complementary levels:
predefined logic and adaptive Al-driven events. Predefined scenarios are
constructed using a CSV-based interface where researchers specify trigger
conditions (e.g., “when vehicle reaches waypoint X” or “at timestamp
T”) and corresponding hazard actions (e.g., “spawn pedestrian crossing
from occlusion” or “reduce visibility to heavy fog”). This approach enables
precise replication of known high-risk scenarios such as work zones, railroad
crossings, and merging areas.

The adaptive Al logic introduces dynamic hazards based on real-
time assessment of driver performance. Non-player vehicle (NPC) agents
controlled by CARLA’s traffic manager can exhibit erratic behaviors—sudden
lane changes, hard braking, or aggressive merging—triggered by the driver’s
actions or deficiencies. For example, if the system detects consistent failure
to check blind spots (via eye tracking), the Al may generate scenarios where
vehicles linger in blind spot positions just before the driver attempts lane
changes. This adaptive training paradigm ensures difficulty scaling matched
to individual weaknesses, promoting skill development in areas of greatest
need.

Hazard categories include: environmental hazards (sudden fog, heavy
rain, sun glare, nighttime conditions); traffic-based hazards (cut-in incidents,
jaywalking pedestrians, vehicles running red lights, sudden stops); distraction
events (in-cab auditory alerts, simulated cell phone notifications, visual
distractors); and vehicle system failures (simulated tire blowouts, loss
of braking power, steering resistance changes). Each hazard event is
precisely time-stamped and logged, creating a unified data stream that links
environmental conditions, vehicle state, driver actions, and physiological
responses.
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CARLA provides eight default town maps ranging from urban downtown
environments to suburban residential areas and highway corridors, each
offering 10+ km? of drivable area. The integration with RoadRunner enables
researchers to import custom road networks based on real-world geographic
data, supporting region-specific training scenarios that reflect local road
geometry, signage, and traffic patterns.

APPLICATIONS AND RESEARCH CAPABILITIES

SMART VR enables personalized, competency-based training rather
than one-size-fits-all approaches. Trainee performance generates rich
multidimensional profiles of behavior and cognitive state across dynamic
scenarios, allowing trainers to identify specific deficits—such as cognitive
overload in dense traffic indicated by high EDA and narrowed gaze—and
prescribe targeted modules. The adaptive Al systematically exposes drivers
to weak points until proficiency is demonstrated. By replicating rare but
high-consequence events—tire failures, jackknifing, aggressive interactions—
the system addresses traditional training’s “competency ceiling,” building
life-saving muscle memory and decision-making patterns without physical
risk.

The platform enables controlled, repeatable, ethical study of driver
behavior in high-risk situations too dangerous to recreate in reality. SMART
VR supports ADAS validation by testing driver interactions with lane-keeping
assist under fatigue or distraction, HMI design optimization by testing alert
modalities while monitoring physiological workload, fatigue studies through
long-duration simulated drives, and investigation of individual differences
in hazard perception and stress response. Synchronized multi-modal data
collection enables predictive crash risk modeling, early warning indicator
identification, and real-time driver monitoring system validation before
vehicle deployment.

For motor carriers and regulatory agencies, SMART VR data informs
evidence-based safety policies and curriculum development. Organizations
can establish baseline physiological and behavioral profiles for safe driving,
enabling periodic driver requalification after incidents or extended leave.
Rich datasets reveal root causes of operational risks within specific
fleet contexts. The framework supports pre-post intervention assessment,
quantitatively evaluating training programs, fatigue countermeasures,
or technology implementations, with transfer of training validated by
comparing simulator performance with subsequent on-road safety records.

DISCUSSION AND FUTURE DIRECTIONS

SMART VR represents significant advancement in CMV safety by
unifying high-fidelity simulation, Al-driven adaptability, and physiological
monitoring into a scalable platform. Key advantages include safety and
ethical research without physical risk, repeatability and experimental control
for rigorous investigation, comprehensive synchronized data collection,
adaptability supporting individualized progression, ecological validity
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promoting behavioral transfer, and modularity enabling external tool
integration. Unlike existing simulators focusing on vehicle control, SMART
VR addresses cognitive and physiological dimensions—the human factors
responsible for most CMV crashes—representing a paradigm shift from
reactive post-incident analysis to proactive risk mitigation.

Several challenges warrant acknowledgment. High-fidelity VR can induce
cybersickness, potentially limiting session duration; the panoramic display
option mitigates this but reduces immersion. Physiological measure validity
requires continual calibration against real-world driving states; individual
baseline differences need careful normalization. Definitive evidence for
long-term transfer to real-world safety requires longitudinal field studies.
Initial capital investment and technical expertise may barrier widespread
adoption for smaller organizations, though modular architecture allows
scaled implementations.

A key direction is real-time risk intervention system development. The
current diagnostic framework will close the loop by detecting imminent risk
as it happens. For example, detecting microsleep patterns could automatically
trigger in-VR alerts or engage simulated ADAS, transforming the platform
into an active safety intervention prototype. Planned enhancements include
EEG integration for cognitive state measurement, machine learning for
automated driver state classification and error prediction, multiplayer
scenarios studying social driving factors, expanded CMV vehicle models with
accurate physics, and cloud-based analytics enabling large-scale comparative
studies. Longitudinal studies underway will establish correlation between
SMART VR performance and real-world safety records, quantifying ROI and
validating effectiveness.

CONCLUSION

Commercial motor vehicle safety remains a critical challenge where human
factors play the dominant role. Traditional training and assessment methods
are no longer sufficient to prepare drivers for the cognitive demands and
unpredictable hazards of modern roadways. The SMART VR framework
offers a paradigm shift by creating a scalable, modular virtual reality
platform that integrates immersive simulation, artificially intelligent hazard
generation, and synchronized physiological monitoring.

By enabling safe, controlled, and repeatable practice of critical skills,
providing deep objective insights into the cognitive and physiological states
underlying driver error, and creating a testbed for next-generation vehicle
technologies and safety interventions, SMART VR addresses fundamental
limitations in current training systems. The framework’s research-grade data
collection capabilities support rigorous scientific investigation of human
factors in commercial driving, while its training applications offer practical
tools for developing safer, more prepared drivers.

As the system evolves with enhanced Al adaptation, expanded sensor
integration, and validated transfer-of-training metrics, it holds the potential
not only to transform commercial driver training but also to fundamentally
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advance the science of human factors in transportation. Through data-
driven, human-centered approaches enabled by platforms like SMART VR,
the long-term goal of zero fatalities in commercial vehicle operations becomes
increasingly achievable.

ACKNOWLEDGMENT

This work was supported by the Federal Motor Carrier Safety Administration
(FMCSA) under Grant No. FM-MHP-0866-24-01-00. The authors gratefully
acknowledge South Carolina State University and the Business, Environment,
Communication & Transportation (BECT) Institute for their institutional
support and resources. The authors also acknowledge WorldViz, Inc. for
technical collaboration on system development and integration.

REFERENCES

Baldwin, T. T. and Ford, J. K., 1988. Transfer of training: A review and directions
for future research. Personnel psychology, 41(1), pp. 63-105..

Bisantz, A. M., Lee, J. D., Pfautz, J., Burns, C., Elm, W. C. and Pennathur, P. R.,
2013, September. Bridging the gap between cognitive systems engineering analysis,
design and practice. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting (Vol. 57, No. 1, pp. 334-338). Sage CA: Los Angeles, CA: SAGE
Publications..

De Winter, J., Van Leeuwen, P. M. and Happee, R., 2012, August. Advantages and
disadvantages of driving simulators: A discussion. In Proceedings of measuring
behavior (Vol. 2012, pp. 28-31). Utrecht: sn.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A. and Koltun, V., 2017, October.
CARLA: An open urban driving simulator. In Conference on robot learning (pp.
1-16). PMLR.

Federal Motor Carrier Safety Administration (FMCSA). (2020). Large truck and bus
crash facts 2020. U. S. Department of Transportation.

Federal Motor Carrier Safety Administration (FMCSA). (2023). Commercial motor
vebicle facts. U. S. Department of Transportation.

Fisher, D. L., Laurie, N. E., Glaser, R., Connerney, K., Pollatsek, A., Duffy, S. A.
and Brock, J., 2002. Use of a fixed-base driving simulator to evaluate the effects
of experience and PC-based risk awareness training on drivers’ decisions. Human
factors, 44(2), pp. 287-302.

Hajian, S., 2019. Transfer of learning and teaching: A review of transfer theories and
effective instructional practices. IAFOR Journal of education, 7(1), pp. 93-111.

Healey, J. A. and Picard, R. W., 2005. Detecting stress during real-world driving
tasks using physiological sensors. IEEE Transactions on intelligent transportation
systems, 6(2), pp. 156-166.

Horswill, Horswill, M. S., Hill, A. and Wetton, M., 2015. Can a video-based hazard
perception test used for driver licensing predict crash involvement?. Accident
Analysis & Prevention, 82, pp. 213-219.

Horswill, M. S., Hill, A. and Wetton, M., 2015. Can a video-based hazard perception
test used for driver licensing predict crash involvement?. Accident Analysis &
Prevention, 82, pp. 213-219.

Kouroussis, G., Vogiatzis, K. E. and Connolly, D. P., 2018. Assessment of railway
ground vibration in urban area using in-situ transfer mobilities and simulated
vehicle-track interaction. International Journal of Rail Transportation, 6(2),
pp- 113-130.



934 Kwakye et al.

MathWorks. (2023). RoadRunner: 3D scene design for automated driving
simulation. Retrieved from https://www.mathworks.com/products/
roadrunner.html.

Mehler, B., Reimer, B. and Coughlin, J. F, 2012. Sensitivity of physiological
measures for detecting systematic variations in cognitive demand from a working
memory task: an on-road study across three age groups. Human factors, 54(3),
pp- 396-412.

Mehler, B., Reimer, B., Coughlin, J. E. and Dusek, J. A., 2009. Impact of incremental
increases in cognitive workload on physiological arousal and performance in
young adult drivers. Transportation research record, 2138(1), pp. 6-12.

Mullen, N., Charlton, J., Devlin, A. and Bedard, M., 2011. Simulator validity:
Behaviours observed on the simulator and on the road. In Handbook of driving
simulation for engineering, medicine and psychology (pp. 1-18). CRC Press.

National Highway Traffic Safety Administration (NHTSA). (2023). Traffic safety
facts 2022: A compilation of motor vebicle crash data. U. S. Department of
Transportation.

Recarte, M. A. and Nunes, L. M., 2003. Mental workload while driving: effects
on visual search, discrimination, and decision making. Journal of experimental
psychology: Applied, 9(2), p. 119.

Riegler, A., Riener, A. and Holzmann, C., 2021. Augmented reality for future
mobility: insights from a literature review and HCI workshop. i-com, 20(3),
pp- 295-318.

Wintersberger, P., Riener, A., Schartmiller, C., Frison, A. K. and Weigl, K.,
2018, September. Let me finish before I take over: Towards attention aware
device integration in highly automated vehicles. In Proceedings of the 10th
international conference on automotive user interfaces and interactive vebicular
applications (pp. 53-65).

Zhang, Y., Kaber, D. B., Rogers, M., Liang, Y. and Gangakhedkar, S., 2014. The
effects of visual and cognitive distractions on operational and tactical driving
behaviors. Human factors, 56(3), pp. 592-604.


https://www.mathworks.com/products/roadrunner.html
https://www.mathworks.com/products/roadrunner.html

	SMART VR for Commercial Motor Vehicles Safety: A Scalable Virtual Reality Framework With AI-Driven Hazard Simulation and Physiological Monitoring
	INTRODUCTION
	LITERATURE REVIEW
	Virtual Reality in Driver Training
	Physiological Monitoring in Driving Research

	PROPOSED METHODOLOGY
	THE SMART VR FRAMEWORK: SYSTEM ARCHITECTURE 
	Hardware Configuration
	Physiological Monitoring and Data Synchronization
	AI-Driven Hazard Scenario Generation

	APPLICATIONS AND RESEARCH CAPABILITIES
	DISCUSSION AND FUTURE DIRECTIONS
	CONCLUSION
	ACKNOWLEDGMENT


