
 Intelligent Human Systems Integration (IHSI), Vol. 200, 2026, 207–216

https://doi.org/10.54941/ahfe1007080

© 2026 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.  
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Received September 10, 2025;  Revised November 19, 2025;  Accepted December 4, 2025;  Available online February 1, 2026

Strategic Defense Against Hybrid Threats 
Under Emerging Disruptive Technologies: 
A Stochastic Modeling Framework
Stefan Klug1, Jonas Schmänk2, Maximilian Moll1, and Stefan Pickl1

1Fakultät für Informatik, Universität der Bundeswehr München, Neubiberg, Germany
2European Commission, Joint Research Centre (JRC), Ispra, Italy

ABSTRACT

The fundamental unpredictability of Emerging Disruptive Technologies creates profound 
strategic asymmetries in hybrid threats, as defenders must prepare for unknown 
capabilities while attackers exploit breakthroughs. This research introduces a new model 
to analyze how technological uncertainty transforms optimal strategies for defensive 
actors, proving essential for developing robust strategies as the pace of technological 
innovation accelerates and the window between innovation and weaponization narrows. 
In this work, technological uncertainty is modelled as a stochastic evolutionary process, 
focusing on the defender’s challenge of resource allocation. Through a parametrized 
model design, the framework provides high customisability for different scenarios and 
technology-specific insights relevant for developing optimized allocations of defense 
resources. We compare a naive baseline resource allocation against an optimized 
allocation in a simulated scenario, showcasing the need for differentiated defense 
postures and showcasing the need for differentiated defense postures and illustrating 
a novel pathway for reasoning under deep technological uncertainty. The experiments 
show a significant superiority of technology-tailored resource allocations, reducing 
overall attack impact and planning uncertainty.

Keywords:  Emerging disruptive technologies (EDTs), Hybrid threats, Stochastic process, 
Modeling

INTRODUCTION

Hybrid threats now increasingly shape the security landscape. As Emerging  
and Disruptive Technologies (EDTs) – AI, biotechnology, quantum, autonomous 
systems – accelerate, the window between innovation and weaponization 
keeps shrinking. Capabilities can surface abruptly, propagate unevenly, and 
interact across domains, defeating deterministic forecast-first planning. 
Examples include novel AI-enabled cyber-attacks or disinformation campaigns 
(Giannopoulos et al., 2021). We analyze how this technological uncertainty 
changes defense decisions. Defenders must allocate scarce resources ex ante 
without knowing which technologies will become operational threats, while 
attackers can opportunistically exploit breakthroughs. Our aim is to provide 
a model to analyse acting under deep uncertainty. Therefore, we combine 
established modelling elements into a coherent stochastic model for analysing 
defence strategies under technological uncertainty.
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Our approach models technology maturity as a stochastic process 
punctuated by rare breakthroughs, maps maturity to operational threat 
intensity via a simple and interpretable materialization function and quantifies 
how defensive investments attenuate those threats. A small of parameters 
governs (i) progress speed and volatility, (ii) activation thresholds and 
curvature in materialization, and (iii) defense effectiveness with diminishing 
returns, thus enabling scenario analysis, sensitivity checks, and portfolio-
style allocation.

Our contributions are threefold: (1) a tractable jump-diffusion model 
of EDT maturation; (2) a transparent maturity-to-threat mapping with 
activation thresholds and (3) a defense effectiveness model linking budgets to 
residual exposures. Collectively, these support principled stress-testing across 
technological futures.

BACKGROUND

Work on technology diffusion traditionally models adoption as smooth 
S-curves, with the Bass model as the canonical baseline (Bass, 1969). However, 
survey evidence shows that real diffusion paths are heterogeneous – epidemic 
learning, legitimation, network effects, and cascades – so purely deterministic 
curves often miss regime shifts and discontinuities (Geroski, 2000).

To address these breaks, a second strand adopts stochastic models with 
jumps. Jump-diffusion frameworks capture both incremental drift and rare, 
high-impact shocks; Kou’s double-exponential jump-diffusion provides 
tractable heavy tails and asymmetry (Kou, 2002). Applied to adoption, these 
models argue that large, infrequent jumps are intrinsic to innovation – an 
especially apt description for EDTs (Teffahi, 2012). As maturing technologies 
create attack opportunities, security economics links evolution to defensive 
choices. On the spending side, Gordon-Loeb derive benchmark investment 
rules under diminishing returns (Gordon and Loeb, 2002). On the adversarial 
side, Stackelberg Security Games formalize budgeted defense against adaptive 
attackers, while formal security models and generic threat matrices supply 
structured state spaces and taxonomies-motivating separable baselines and 
many-to-many mappings from technologies to threats (Kar, 2018; Ryan, 
2001; Duggan, 2007).

Aggregating multi-dimensional residual exposures likewise benefits from 
convex, risk-sensitive measures that better reflect co-occurrence and tail 
losses than linear sums (McNeil, 2015). An allied dose-response debate offers 
intuition for mapping maturity to risk: linear no-threshold is conservative, 
whereas thresholded responses capture activation effects beyond a critical 
level (Wojcik and Zölzer, 2024).

Based on these strands, we couple a jump-diffusion process of EDT 
maturity with a parameterized materialization map and a budgeted defense 
allocation problem, enabling analysis across uncertainty regimes and 
retaining interpretability.
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MODEL

EDTs evolve stochastically and can generate novel threats at unpredictable 
times. Defenders allocate resources ex ante without knowing which EDTs will 
materialize into threats, while attackers may exploit EDTs opportunistically 
when advantageous.

State Variables and Spaces

At time 0t ≥ , the model is summarized by the triple ( ), , t tw X T : the defender’s 
allocation w , the vector of technology maturities tX , and the induced threat 
intensities tT .

Defense Portfolio Space. The defender allocates a fixed budget 0B >  across 

n defense categories, with a defense portfolio ( ){ }1
  :

n in

i
D w w B+ =
= ∈ ≤∑ .

Technology State Space. The maturity of k EDTs at time t  is given by 
( ) ( )( )1 k

t t tX X , , X k
+= … ∈ .

Threat Space. Potential threats are represented by a vector  k
tT +∈ , where 

each component captures the intensity of a particular attack vector.

Stochastic Technology Evolution

Following Geroski (2000), we model latent technological maturity for 
each technology 1, ,i k= …  by a jump-diffusion process that accommodates 
both gradual progress and rare breakthroughs. Let ( )i

tX ∈ denote the 
(unbounded) latent maturity state. Each technology ( )i

tX  evolves according 
to a jump-diffusion process (Merton, 1976):

	 ( ) ( )( ) ( )( ) ( ) ( ) ( )i i i i i i
t i t i t t tdX X , t dt X , t dW J dN ,= µ + σ +

where ( ),i tµ ⋅  is positive deterministic drift (baseline technological progress), 

( ),i tσ ⋅  the diffusion coefficient (continuous uncertainty), ( )i
tW  a standard 

Brownian motion, ( )iJ  the jump size sampled from a normal distribution, 
such when a breakthrough occurs and ( )i

tN  a Poisson process representing 
breakthrough events with intensity ( )i

Nλ , with the parameters of the probability 
distributions being technology-specific. ( )

0
iX  can be initialized with scenario-

specific values to model various starting conditions.
This formulation captures both gradual technological progress and 

sudden, unpredictable breakthroughs.
Due to its positive deterministic component, ( )i

tX  tends to infinity. Under 
the observation, that eventually increasing technical maturity has diminishing 
impact on the actual applicability of a technology, a bounded function that is 
degressive after passing a certain threshold is included in the model as well. 
To address the applicability of the model in decision making process, we map 
the latent state to a bounded Technology Readiness Level (TRL) ( ) [ ]0,9i

tY ∈  

as an established concept in technology driven-contexts via a logistic 

function ( ) ( )( )i
tXi

tY = Γ  with technology-specific slope 0
ikσ >  and midpoint  
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( ): i
i tx Y =

( )( )
1

9
1 exp 

i

i
t ik X x

⋅
 + −σ − 


, under the assumption, that for higher 

technical maturity ( )i
tX , the effects on higher TRLs is diminishing.

Threat Materialization Function

The realized threat vector at time t  is given by ( ) ,t tT Y= Φ  where : k k
+ +Φ →   

maps the maturity levels of the k EDTs componentwise into k corresponding 
threat intensities. The function Φ may exhibit threshold or nonlinear effects, 
reflecting the fact that a technology only becomes threatening once its 
maturity level crosses a critical point.

A suitable threat materialization function for ( )tYΦ  is a nonlinear threshold 
function. This type of function effectively models the relationship between 
an EDT maturity and the intensity of its corresponding threat. The function 
captures the idea that a technology only becomes a significant threat once its 
maturity level exceeds a certain critical point.

A threshold function for ( )tYΦ  can be defined, for 1, ,i k= … , as:

( )
( )( ) ( )

( )

,  if
0, 0, 0,

0,  if  

ii i
i t t i

t i i i
i

t i

Y Y
Y

Y

β
α θ

α β θ
θ

 ⋅ >Φ = > > ≥
 ≤

where iθ  is the critical maturity threshold for the i-th EDT, iα  is a scaling 
factor governing the post-threshold growth rate and iβ  is an exponent that 
controls nonlinearity (if 1iβ > , the threat intensifies at an accelerating rate). 
This piecewise function remains at zero until the maturity level ( )i

tY   surpasses 
the critical threshold iθ . Once past this point, the threat intensity materializes 
and increases according to a power law. This model is consistent with the 
observation that a technology (e.g., artificial intelligence) may pose negligible 
risks for some time, but once it reaches a certain level of sophistication, the 
associated threats (e.g., deepfakes, autonomous weapons) can grow rapidly.

Defense Effectiveness Model

This section formalizes how defensive investments attenuate realized threats 
and how the remaining exposure is summarized into a decision-relevant loss. 
The model has two components: the Protection Function ( ),t tP w T , which 
maps a defense portfolio and a threat profile into post-defense (residual) 
exposure per dimension and Residual Loss After Protection, which aggregates 
the residual vector  ( )tT w  into a scalar loss ( )tL w  via a chosen risk-sensitive 
aggregator. The next subsections detail these components. 

Protection Function

Given a defense portfolio kw D +∈ ⊆   and a realized threat vector k
tT R+∈ ,  

the protection function measuring the effectiveness of the budget vector 
in component i is defined by ( ) ( ) ( ) ( ) ( )( )t t tP w, T T 1 e

i i
ti i w C−= −  . Here iw  is the 
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(time-invariant) allocation to defense dimension i, and 0iC >  is a sensitivity 
parameter (either a common scalar or technology-specific). Higher ( )i

tP  
indicates better protection.

The full protection vector is ( ) ( ) ( ) ( ) ( )( )1, , , , , ,k
t t t t t tP w T P w T P w T= …  which 

collects the effectiveness of each defense dimension against the realized 
threat profile tT . This specification serves as a tractable baseline that can be 
generalized to nonlinear mappings (see also Duggan, 2007).

Residual Loss After Protection

Let k
tT +∈  denote the realized threat vector at time t  and ( ), k

t tP w T +∈  the 

corresponding protection vector generated by defense portfolio w D∈ .

The residual threat vector is then ( ) ( )( ) , ,t t t tT w T P w T
+

= −  
where the positive-part operator is applied componentwise, i.e. 

( ) ( ) ( ) ( ) ( )max{  , ,0}i i i
t t t tT w T P w T= −  for each component i.  

To evaluate overall damage, we introduce a loss aggregator : kr + +→    
that maps the residual threat vector into a scalar loss (see also McNeil, 2015): 

( ) ( )( ).t tL w r T w=   The choice of aggregator r captures a decision-maker’s 
preferences: Linear form, ( )r z z= α  with some k

+α∈ , yields a weighted-
sum baseline, while convex forms (e.g. norms or power functions) model risk 
aversion, cascading effects, or worst-case sensitivity across multiple threat 
dimensions.

Payoffs

The defender chooses a static portfolio  w D∈  to minimize the 
expected discounted loss plus a (possibly convex) deployment cost: 

( ) ( ) ( )( )ñ

0
,D t

tJ w e L w c w dt
∞ − = +  ∫  where ( )  0c w ≥  captures the cost of 

sustaining portfolio w .

METHODS

We compare two static allocation rules, each choosing a single budget vector 
 w at  0t = , which is then held fixed over the horizon.
Uniform allocation. A baseline that spreads the budget evenly across 

technologies, such that ( ),  i uni B
w

k
=  for technologies 1, ,i k= … .

Optimized allocation. In the given model, various techniques are applicable 
to derive optimized resource allocation. Since the detailed optimization of 
the model will be left for future work, the focus of this section is to showcase 
the general significance of optimization and to lay groundwork for future 
model iterations. The stochastic process is implemented in a discrete manner 
for simulation purposes (Glasserman, 2003), essentially making it a discrete 
Markov decision process. Subsequent studies will implement dynamic resource 
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allocation with sequential decision-making, thereby rendering reinforcement 
learning a feasible optimization approach. In order to derive an optimised static 
resource allocation in the current work, reinforcement learning is employed 
for the exploration of its general applicability. Therefore, a reinforcement 
learning agent with policy π  is trained to maximise the expected discounted 

reward (negative loss). The observation is given by ( )( )0 0
, ,t tY Y θΦ ; the action 

is a continuous allocation projected onto D. At evaluation, the policy outputs 

a single one-shot allocation ( )( )0 0

rl
 , ,t tw Y Yπ θ= Φ , which is fixed for the 

episode. In the current setup, a finite time horizon T = 10 is considered. We 

use Soft Actor-Critic (SAC) due its sample efficiency (Haarnoja, 2018).
All methods are evaluated by the same criterion, the expected discounted 

loss ( )t
tt

L w δ ∑  under the stochastic technology trajectories, with the 

cost ( )c w  of maintaining some budget allocation w  being set to 0 and where 
the residual threat aggregator r is the unweighted sum of  ( ) ( )i

tT w .

Figure 1: Trajectories of 200 sampled technology evolutions, given the initial set of 
parameters displayed in Table 1.

EXPERIMENTS AND RESULTS

To assess the models capabilities and limitations, we have deployed the 
model for a varying set of randomly initialized parameters (see Appendix).  
The parameters set has been used in 200 simulation runs each to create 
technology and threat trajectories with 6k =  technologies, with initial 
technology maturity ( )

0
iX  initialized from a random uniform distribution. 

The uniform and RL-based budget allocation are evaluated against these 
simulated trajectories.
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Figure 2: Trajectories of 200 sampled threat evolutions, based on the technology 
trajectories, given the initial set of parameters displayed in Table 1.

To assess the model capabilities, we used linear residual loss functions 
and a discount factor of 0.95 over a time horizon of 10 time steps. With the 
parameter set shown in Error! Reference source not found. the  corresponding 
technology and threat trajectories displayed in Figure 1 and Figure 2 were 
simulated (see APPENDIX: OVERVIEW OF MODEL PARAMETERS for 
further parameters used in the simulation). A high flexibility to account for 
different evolution paths of EDTs can be observed, enabling the simulation 
of customized threat scenarios, thus addressing the need for customizable 
models that can serve as a foundation for decision-making under technological 
uncertainty.

Table 1: Model parameters used in simulation and respective budget allocations 
deviation.

Threat i 
Parameter

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

kσ 0.65 0.42 0.33 0.40 0.46 0.56

breakthroughk 4.40 8.50 1.56 1.12 6.59 3.28

iθ 1 4 4 7 4 1

( )i
Nλ

0.69 0.22 0.11 0.39 0.36 0.49

( )i
Jµ 0.40 0.58 0.72 0.46 0.43 0.73

( )i
Jσ

0.48 0.49 0.46 0.17 0.12 0.33

Allocation

uniw 1.67 1.67 1.67 1.67 1.67 1.67

RLw 1.87 0.09 2.63 2.65 0.08 2.67
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In the given parameter setup, the uniform allocation resulted in a higher 
expected total simulated payoff of approximately 156.94, with a standard 
deviation of 26.22. In contrast, the RL agent achieved a notably lower 
expected loss of approximately 100.58, with a standard deviation of 20.84 
through its technology-specific budget allocation (see Figure 3).

Figure 3: Distribution of the total simulated payoff of 200 simulations for the uniform 
and RL-based allocation under the parameter set given in Table 1.

This suggests the RL agent’s learned strategy is more effective at 
minimizing loss in this dynamic threat environment compared to a naive 
uniform distribution. The lower standard deviation of the threat-specific 
allocation is especially insightful for risk-averse contexts. Notably, the 
coefficient of variation is 0.17 in the uniform allocation and 0.21 in the 
RL case.  Specifically, technologies 3, 4, and 6 received the highest average 
allocations, while technologies 2 and 5 received the lowest. This non-uniform 
distribution aligns with the lower expected loss achieved by the agent, 
implying that tailoring the defense strategy based on the characteristics and 
evolution of individual technologies is crucial for minimizing overall risk.

In the current parameter setting, little budget is allocated to technology 4 
despite its highly dynamic configuring parameters. As correctly predicted by 
the RL-agent, it does not reach the threat threshold in the investigated time 
interval, therefore not requiring any budget allocation at 0t = . In a dynamic 
allocation setting, the defence vector would be expected to increasingly 
accommodate more budget for this technology for tY  with t 0> .

Overall, the base model demonstrates strong capability to describe a high 
variety of threat trajectories while also hinting at the need for optimized 
resource allocation strategies in environments under high uncertainty.

CONCLUSION

We have introduced a novel model paradigm to capture technological 
uncertainty in defensive postures under strategic asymmetry between 
defender and potential attackers, as it is typical in environments facing hybrid 
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threats, thereby addressing growing needs of practitioners and researchers. 
The proposed model builds on clearly defined, but parametrized building 
blocks, namely a stochastic jump-diffusion-process to describe technological 
evolution including disruptive innovations leading to rapid advancements 
in a threat domain. To accommodate different thresholds of technologies 
to become relevant in an attack, a threat materialization is introduced and 
a defence effectiveness function that maps a defence budget allocation to 
specific threats. The final aggregated loss is analyzed based on chosen budget 
allocations. A budget allocated by a SAC-agent significantly outperformed a 
naïve baseline uniform allocation. The general applicability of the model to 
describe complex and stochastic technological evolution in various scenarios 
and the need for sophisticated defense strategies was therefore demonstrated.

The present framework takes a static, ex-ante view of defense allocation. 
A natural next step is to endogenize dynamic decision-making so that the 
defender updates allocations as evidence about technology maturation 
accumulates. Concretely, rather than choosing w  once at 0t = , future work 
will develop strategies that maps the available information tI  (e.g., current 
TRLs tY  estimated jump intensities, and recent threat realizations) to a 
budget-feasible allocation dynamically at each time t . Furthermore, in future 
work, empirically derived technology-specific parameters can be employed, 
to allow for near-real-world finding.

APPENDIX: OVERVIEW OF MODEL PARAMETERS 

Global and Simulation Controls

•	 The stochastic process evolves with drift rates uniformly sampled from 
[0.01, 0.03], volatility from [0.01, 0.02], breakthrough intensities from 
[0.1, 0.8], and normally distributed jumps with means in [0.2, 0.8] and 
standard deviations in [0.1, 0.5].

•	 Number of technologies 6k = .
•	 Defense Budget 10B = .
•	 Discount factor of loss function  0.95δ = .
•	 Initial states ( ) [ ]0 0,3iX Uniform∼ ; TRLs start at ( ) ( )( )i

0 0XiY = Γ .
•	 Time Horizon  10T =  and scenarios _   200n scenarios= .

Threat and Defense Interaction

•	 Threat materialization Φ: componentwise thresholded power law ( )  i
tT

with scales   0.05iα = , exponents   2iβ = , and thresholds iθ  { }0, ,8∈ …  as in 
Table 1

•	 Defense effectiveness  ( ) ( ),i
t tP w T  with parameter 0.5C =  

SAC Hyperparameters (Stable-Baselines3):
•	 Learning rate: 0.0008
•	 Tau: 0.1
•	 Batchsize: 512
•	 Total time steps: 5000
•	 Remaining parameters are default values
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