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ABSTRACT

The fundamental unpredictability of Emerging DisruptiveTechnologies creates profound
strategic asymmetries in hybrid threats, as defenders must prepare for unknown
capabilities while attackers exploit breakthroughs.This research introduces a new model
to analyze how technological uncertainty transforms optimal strategies for defensive
actors, proving essential for developing robust strategies as the pace of technological
innovation accelerates and the window between innovation and weaponization narrows.
In this work, technological uncertainty is modelled as a stochastic evolutionary process,
focusing on the defender’s challenge of resource allocation. Through a parametrized
model design, the framework provides high customisability for different scenarios and
technology-specific insights relevant for developing optimized allocations of defense
resources. We compare a naive baseline resource allocation against an optimized
allocation in a simulated scenario, showcasing the need for differentiated defense
postures and showcasing the need for differentiated defense postures and illustrating
a novel pathway for reasoning under deep technological uncertainty. The experiments
show a significant superiority of technology-tailored resource allocations, reducing
overall attack impact and planning uncertainty.

Keywords: Emerging disruptive technologies (EDTs), Hybrid threats, Stochastic process,
Modeling

INTRODUCTION

Hybrid threats now increasingly shape the security landscape. As Emerging
and Disruptive Technologies (EDTs) — Al, biotechnology, quantum, autonomous
systems — accelerate, the window between innovation and weaponization
keeps shrinking. Capabilities can surface abruptly, propagate unevenly, and
interact across domains, defeating deterministic forecast-first planning.
Examples include novel Al-enabled cyber-attacks or disinformation campaigns
(Giannopoulos et al., 2021). We analyze how this technological uncertainty
changes defense decisions. Defenders must allocate scarce resources ex ante
without knowing which technologies will become operational threats, while
attackers can opportunistically exploit breakthroughs. Our aim is to provide
a model to analyse acting under deep uncertainty. Therefore, we combine
established modelling elements into a coherent stochastic model for analysing
defence strategies under technological uncertainty.
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Our approach models technology maturity as a stochastic process
punctuated by rare breakthroughs, maps maturity to operational threat
intensity via a simple and interpretable materialization function and quantifies
how defensive investments attenuate those threats. A small of parameters
governs (i) progress speed and volatility, (ii) activation thresholds and
curvature in materialization, and (iii) defense effectiveness with diminishing
returns, thus enabling scenario analysis, sensitivity checks, and portfolio-
style allocation.

Our contributions are threefold: (1) a tractable jump-diffusion model
of EDT maturation; (2) a transparent maturity-to-threat mapping with
activation thresholds and (3) a defense effectiveness model linking budgets to
residual exposures. Collectively, these support principled stress-testing across
technological futures.

BACKGROUND

Work on technology diffusion traditionally models adoption as smooth
S-curves, with the Bass model as the canonical baseline (Bass, 1969). However,
survey evidence shows that real diffusion paths are heterogeneous — epidemic
learning, legitimation, network effects, and cascades — so purely deterministic
curves often miss regime shifts and discontinuities (Geroski, 2000).

To address these breaks, a second strand adopts stochastic models with
jumps. Jump-diffusion frameworks capture both incremental drift and rare,
high-impact shocks; Kou’s double-exponential jump-diffusion provides
tractable heavy tails and asymmetry (Kou, 2002). Applied to adoption, these
models argue that large, infrequent jumps are intrinsic to innovation — an
especially apt description for EDTs (Teffahi, 2012). As maturing technologies
create attack opportunities, security economics links evolution to defensive
choices. On the spending side, Gordon-Loeb derive benchmark investment
rules under diminishing returns (Gordon and Loeb, 2002). On the adversarial
side, Stackelberg Security Games formalize budgeted defense against adaptive
attackers, while formal security models and generic threat matrices supply
structured state spaces and taxonomies-motivating separable baselines and
many-to-many mappings from technologies to threats (Kar, 2018; Ryan,
2001; Duggan, 2007).

Aggregating multi-dimensional residual exposures likewise benefits from
convex, risk-sensitive measures that better reflect co-occurrence and tail
losses than linear sums (McNeil, 2015). An allied dose-response debate offers
intuition for mapping maturity to risk: linear no-threshold is conservative,
whereas thresholded responses capture activation effects beyond a critical
level (Wojcik and Zolzer, 2024).

Based on these strands, we couple a jump-diffusion process of EDT
maturity with a parameterized materialization map and a budgeted defense
allocation problem, enabling analysis across uncertainty regimes and
retaining interpretability.
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MODEL

EDTs evolve stochastically and can generate novel threats at unpredictable
times. Defenders allocate resources ex ante without knowing which EDTs will
materialize into threats, while attackers may exploit EDTs opportunistically
when advantageous.

State Variables and Spaces

At time ¢ > 0, the model is summarized by the triple (w,X,,T, ): the defender’s
allocation w, the vector of technology maturities X,, and the induced threat
intensities T,.

Defense Portfolio Space. The defender allocates a fixed budget B > 0 across

"l < B}.

n defense categories, with a defense portfolio Dz{w eRl:)

Technology State Space. The maturity of & EDTs at time ¢ is given by
X =(X(”,...,X(k))eRk.

Threat Space. Potential threats are represented by a vector T, eR*, where
each component captures the intensity of a particular attack vector.

Stochastic Technology Evolution

Following Geroski (2000), we model latent technological maturity for
each technology i =1,...,k by a jump-diffusion process that accommodates
both gradual progress and rare breakthroughs. Let Xt(i) e R denote the
(unbounded) latent maturity state. Each technology X! evolves according
to a jump-diffusion process (Merton, 1976):

dXii) =K (Xii), t)dt + 0, (X?), t)dwt(i) i J(i)dN(ti),

where p, (-, ¢) is positive deterministic drift (baseline technological progress),

Gi(',t) the diffusion coefficient (continuous uncertainty), \X/t(i) a standard

Brownian motion, /' the jump size sampled from a normal distribution,
such when a breakthrough occurs and N a Poisson process representing
breakthrough events with intensity 2, with the parameters of the probability

distributions being technology-specific. X" can be initialized with scenario-
specific values to model various starting conditions.

This formulation captures both gradual technological progress and
sudden, unpredictable breakthroughs.

Due to its positive deterministic component, X tends to infinity. Under
the observation, that eventually increasing technical maturity has diminishing
impact on the actual applicability of a technology, a bounded function that is
degressive after passing a certain threshold is included in the model as well.
To address the applicability of the model in decision making process, we map

the latent state to a bounded Technology Readiness Level (TRL) Y e [0,9]
as an established concept in technology driven-contexts via a logistic

function Y = F(XS)) with technology-specific slope o, >0 and midpoint
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x Y =9. ! , under the assumption, that for higher

S 1+exp(—0kl [Xt(i) —xl.*])

technical maturity X", the effects on higher TRLs is diminishing.

Threat Materialization Function

The realized threat vector at time ¢ is given by T, = ®(Y,), where @ : R* — R*
maps the maturity levels of the kK EDTs componentwise into k corresponding
threat intensities. The function @ may exhibit threshold or nonlinear effects,
reflecting the fact that a technology only becomes threatening once its
maturity level crosses a critical point.

A suitable threat materialization function for ® (Y, )is a nonlinear threshold
function. This type of function effectively models the relationship between
an EDT maturity and the intensity of its corresponding threat. The function
captures the idea that a technology only becomes a significant threat once its
maturity level exceeds a certain critical point.

A threshold function for @ (Y,) can be defined, for i =1,...,k, as:

Q .(Yt(") )ﬁ’ , if Yt(i) > 6.
CD(X,)Z a,>0,6>0,6 >0,

0,ifY" <o

where 0, is the critical maturity threshold for the i-th EDT, o, is a scaling
factor governing the post-threshold growth rate and B, is an exponent that
controls nonlinearity (if S, > 1, the threat intensifies at an accelerating rate).
This piecewise function remains at zero until the maturity level Yt(i) surpasses
the critical threshold .. Once past this point, the threat intensity materializes
and increases according to a power law. This model is consistent with the
observation that a technology (e.g., artificial intelligence) may pose negligible
risks for some time, but once it reaches a certain level of sophistication, the
associated threats (e.g., deepfakes, autonomous weapons) can grow rapidly.

Defense Effectiveness Model

This section formalizes how defensive investments attenuate realized threats
and how the remaining exposure is summarized into a decision-relevant loss.
The model has two components: the Protection Function P,(w,T,), which
maps a defense portfolio and a threat profile into post-defense (residual)
exposure per dimension and Residual Loss After Protection, which aggregates
the residual vector T, (w) into a scalar loss L, () via a chosen risk-sensitive
aggregator. The next subsections detail these components.

Protection Function

Given a defense portfolio w e D  R* and a realized threat vector T, € R,
the protection function measuring the effectiveness of the budget vector
. . : : e .

in component i is defined by P (w,T,)=T" (1—6 e ) . Here w, is the
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(time-invariant) allocation to defense dimension i, and C; >0 is a sensitivity
parameter (either a common scalar or technology-specific). Higher R(’)

indicates better protection.

The full protection vector is P, (w0, T, ) = (Pt(l) (w,T,)),..., P (w,T, )), which
collects the effectiveness of each defense dimension against the realized
threat profile T,. This specification serves as a tractable baseline that can be
generalized to nonlinear mappings (see also Duggan, 2007).

Residual Loss After Protection
Let T, € RY denote the realized threat vector at time ¢ and P, (w, T, ) € R the

corresponding protection vector generated by defense portfolio w € D.

The residual threat vector is then T,(w)=(T,-P (w,T,)),
where the positive-part operator is applied componentwise, i.e.
T (w) = max{T" - P (w,T,),0} for each component i.
To evaluate overall damage, we introduce a loss aggregator 7:R* >R,
that maps the residual threat vector into a scalar loss (see also McNeil, 2015):
L (w)= r(i (w)) The choice of aggregator r captures a decision-maker’s
preferences: Linear form, 7(z) =o'z with some o € Rf, yields a weighted-
sum baseline, while convex forms (e.g. norms or power functions) model risk
aversion, cascading effects, or worst-case sensitivity across multiple threat

dimensions.

Payoffs

The defender chooses a static portfolio weD to minimize the
expected discounted loss plus a (possibly convex) deployment cost:

JP (w)zEU:e’ﬁ‘(Lz(w)+c(w))dt}, where ¢(w)>0 captures the cost of

sustaining portfolio w.

METHODS

We compare two static allocation rules, each choosing a single budget vector
wat t =0, which is then held fixed over the horizon.
Uniform allocation. A baseline that spreads the budget evenly across

technologies, such that w!"" =§ for technologies i =1,..., k.

Optimized allocation. In the given model, various techniques are applicable
to derive optimized resource allocation. Since the detailed optimization of
the model will be left for future work, the focus of this section is to showcase
the general significance of optimization and to lay groundwork for future
model iterations. The stochastic process is implemented in a discrete manner
for simulation purposes (Glasserman, 2003), essentially making it a discrete
Markov decision process. Subsequent studies will implement dynamic resource
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allocation with sequential decision-making, thereby rendering reinforcement
learning a feasible optimization approach.In order to derive an optimised static
resource allocation in the current work, reinforcement learning is employed
for the exploration of its general applicability. Therefore, a reinforcement
learning agent with policy 7 is trained to maximise the expected discounted

reward (negative loss). The observation is given by (Yt0 , O (Yto ), 6’) ; the action
is a continuous allocation projected onto D. At evaluation, the policy outputs
a single one-shot allocation w" =7 (YtO,(D(YtO),Q), which is fixed for the
episode. In the current setup, a finite time horizon T = 10 is considered. We

use Soft Actor-Critic (SAC) due its sample efficiency (Haarnoja, 2018).

All methods are evaluated by the same criterion, the expected discounted
loss E[ZtS’ L, (w)] under the stochastic technology trajectories, with the
cost ¢(w) of maintaining some budget allocation w being set to 0 and where

the residual threat aggregator r is the unweighted sum of T (w).
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Figure 1: Trajectories of 200 sampled technology evolutions, given the initial set of
parameters displayed inTable 1.

EXPERIMENTS AND RESULTS

To assess the models capabilities and limitations, we have deployed the
model for a varying set of randomly initialized parameters (see Appendix).
The parameters set has been used in 200 simulation runs each to create
technology and threat trajectories with k=6 technologies, with initial
technology maturity X(()i) initialized from a random uniform distribution.
The uniform and RL-based budget allocation are evaluated against these
simulated trajectories.
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Figure 2: Trajectories of 200 sampled threat evolutions, based on the technology
trajectories, given the initial set of parameters displayed inTable 1.

To assess the model capabilities, we used linear residual loss functions
and a discount factor of 0.95 over a time horizon of 10 time steps. With the
parameter set shown in Error! Reference source not found. the corresponding
technology and threat trajectories displayed in Figure 1 and Figure 2 were
simulated (see APPENDIX: OVERVIEW OF MODEL PARAMETERS for
further parameters used in the simulation). A high flexibility to account for
different evolution paths of EDTs can be observed, enabling the simulation
of customized threat scenarios, thus addressing the need for customizable
models that can serve as a foundation for decision-making under technological
uncertainty.

Table 1: Model parameters used in simulation and respective budget allocations
deviation.

Threat 2 i=1 i=2 i=3 i=4 i=5 i=6

Parameter

o, 0.65 0.42 0.33 0.40 0.46 0.56

kbmakthrough 4.40 8.50 1.56 1.12 6.59 3.28

0 1 4 4 7 4 1

20 0.69 0.22 0.11 0.39 0.36 0.49
N

H(ji) 0.40 0.58 0.72 0.46 0.43 0.73

o0 0.48 0.49 0.46 0.17 0.12 0.33
]

Allocation

W 1.67 1.67 1.67 1.67 1.67 1.67
RL 1.87 0.09 2.63 2.65 0.08 2.67
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In the given parameter setup, the uniform allocation resulted in a higher
expected total simulated payoff of approximately 156.94, with a standard
deviation of 26.22. In contrast, the RL agent achieved a notably lower
expected loss of approximately 100.58, with a standard deviation of 20.84
through its technology-specific budget allocation (see Figure 3).

Comparison of Payoff Distributions
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Figure 3: Distribution of the total simulated payoff of 200 simulations for the uniform
and RL:-based allocation under the parameter set given inTable 1.

This suggests the RL agent’s learned strategy is more effective at
minimizing loss in this dynamic threat environment compared to a naive
uniform distribution. The lower standard deviation of the threat-specific
allocation is especially insightful for risk-averse contexts. Notably, the
coefficient of variation is 0.17 in the uniform allocation and 0.21 in the
RL case. Specifically, technologies 3, 4, and 6 received the highest average
allocations, while technologies 2 and 5 received the lowest. This non-uniform
distribution aligns with the lower expected loss achieved by the agent,
implying that tailoring the defense strategy based on the characteristics and
evolution of individual technologies is crucial for minimizing overall risk.

In the current parameter setting, little budget is allocated to technology 4
despite its highly dynamic configuring parameters. As correctly predicted by
the RL-agent, it does not reach the threat threshold in the investigated time
interval, therefore not requiring any budget allocation at # =0. In a dynamic
allocation setting, the defence vector would be expected to increasingly
accommodate more budget for this technology for Y, with t > 0.

Overall, the base model demonstrates strong capability to describe a high
variety of threat trajectories while also hinting at the need for optimized
resource allocation strategies in environments under high uncertainty.

CONCLUSION

We have introduced a novel model paradigm to capture technological
uncertainty in defensive postures under strategic asymmetry between
defender and potential attackers, as it is typical in environments facing hybrid
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threats, thereby addressing growing needs of practitioners and researchers.
The proposed model builds on clearly defined, but parametrized building
blocks, namely a stochastic jump-diffusion-process to describe technological
evolution including disruptive innovations leading to rapid advancements
in a threat domain. To accommodate different thresholds of technologies
to become relevant in an attack, a threat materialization is introduced and
a defence effectiveness function that maps a defence budget allocation to
specific threats. The final aggregated loss is analyzed based on chosen budget
allocations. A budget allocated by a SAC-agent significantly outperformed a
naive baseline uniform allocation. The general applicability of the model to
describe complex and stochastic technological evolution in various scenarios
and the need for sophisticated defense strategies was therefore demonstrated.

The present framework takes a static, ex-ante view of defense allocation.
A natural next step is to endogenize dynamic decision-making so that the
defender updates allocations as evidence about technology maturation
accumulates. Concretely, rather than choosing w once at ¢t =0, future work
will develop strategies that maps the available information J, (e.g., current
TRLs Y, estimated jump intensities, and recent threat realizations) to a
budget-feasible allocation dynamically at each time ¢. Furthermore, in future
work, empirically derived technology-specific parameters can be employed,
to allow for near-real-world finding.

APPENDIX: OVERVIEW OF MODEL PARAMETERS
Global and Simulation Controls

e The stochastic process evolves with drift rates uniformly sampled from
[0.01, 0.03], volatility from [0.01, 0.02], breakthrough intensities from
[0.1, 0.8], and normally distributed jumps with means in [0.2, 0.8] and
standard deviations in [0.1, 0.5].

e Number of technologies k = 6.

e Defense Budget B=10.

e Discount factor of loss function §=0.95.

o Initial states X ~ Uniform[0,3]; TRLs start at Y, = F(Xg)).
e Time Horizon T =10 and scenarios # _ scenarios=200.

Threat and Defense Interaction

o Threat materialization ®: componentwise thresholded power law T.”
with scales &, =0.03, exponents f.=2, and thresholds 6. € {0,...,8} as in
Table 1

e Defense effectiveness l’t(i) (w,Tt) with parameter C =0.5

SAC Hyperparameters (Stable-Baselines3):

Learning rate: 0.0008

Tau: 0.1

Batchsize: 512

Total time steps: S000

Remaining parameters are default values
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