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ABSTRACT

Expert systems offer a promising way to automatically identify energy efficiency 
potentials in industry and thereby contribute to energy cost savings and decarbonization. 
In these systems, domain-specific knowledge is embedded and linked to automated 
analyses of measurement data. Until now, knowledge engineers have extracted, 
structured, and represented the necessary domain-specific knowledge in a form usable 
by expert systems, which is time-consuming and costly. This article presents a hybrid 
approach that couples expert systems with large language models to support the work of 
knowledge engineers. Energy performance indicators, selected by the energy manager, 
serve to quantify changes in energy performance and reproduce the heuristic decision-
making of human experts on a quantitative basis. These indicators then form the basis 
for a rule set that targets areas with the highest potential energy savings. For practical 
implementation, a fuzzy rule base is applied because it captures decisions made under 
imprecise information and allows conditions and conclusions that can be partially 
true or false. Building the fuzzy rule base involves assigning membership functions to 
input and output variables and defining their linguistic partitioning, since these choices 
shape both sensitivity and interpretability. The rule base is implemented as generally 
understandable IF–THEN rules. The premise consists of energy performance indicators 
that are associated with linguistic variables and combined using logical operators. The 
conclusion contains priority numbers, which are also associated with linguistic variables 
and express the energy efficiency potential. In the hybrid setup presented in this article, 
large language models formalize given energy performance indicators and fuzzy rules, 
propose membership functions to populate the fuzzy rule base, and generate visualization 
scripts in Python. This leads to accelerated development while preserving transparent, 
comprehensible, and reproducible decision logic characteristic of expert systems. The 
approach is demonstrated using a foam panel production line in the chemical industry.
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INTRODUCTION

The industrial sector plays a decisive role in achieving climate targets, as 
it is the largest emitter of energy-related greenhouse gases in the European 
Union (Hannah Ritchie, 2020). At the same time, industrial companies must 
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ensure their global competitiveness. In this tension field, energy efficiency is 
regarded as a key lever, since it contributes directly to emission reduction while 
allowing production costs to be reduced (European Parliament, Council of 
the European Union, 2023). Despite its relevance, the identification of energy 
efficiency potentials in manufacturing is often constrained by organizational 
and knowledge-related barriers, hindering subsequent realization efforts. 
Surveys reveal that companies frequently lack awareness of suitable measures, 
digital competencies among staff remain limited, and consulting resources 
are scarce (ABB Ltd, 2022).

Expert systems (ESs) offer a promising way to address these obstacles 
and support industrial companies in achieving both cost savings and 
decarbonization goals. ESs are computer programs designed to replicate 
the reasoning of human experts by integrating domain-specific knowledge 
with automated analysis of measurement data. In the context of energy 
management, such systems systematically identify efficiency potentials and 
guide decision-making with fuzzy logic for improvement measures (Seyfried 
et al., 2024). The development of ESs, however, relies on knowledge 
engineers, who extract, structure, and formalize expert knowledge into 
machine-usable representations. This process is labor-intensive and often 
limits the scalability of ESs across industrial domains (Ioshchikhes & Zink et 
al., 2025). To reduce the dependency on manual knowledge engineering and 
to accelerate ES development, this paper proposes a hybrid approach that 
employs large language models (LLMs) as assistants in the formalization 
process. A complete substitution of conventional ESs is not intended. 
While LLMs can also enhance energy efficiency, ESs remain essential for 
ensuring transparency, reproducibility, and deterministic reasoning based on 
explicitly formalized knowledge (Wu et al., 2025). In contrast, LLMs operate 
probabilistically and generate responses without guaranteed consistency or 
intrinsic explainability (Martens & Cap, 2025). Combining both paradigms 
allows the transparency of ESs to be maintained while leveraging the 
generative strengths of LLMs.

Recent works addressing knowledge engineering with LLMs have 
increasingly explored how such models can support the extraction and 
structuring of expert knowledge for rule-based or symbolic systems. Duranti et 
al. (2025) combine LLM outputs with symbolic verification modules to derive 
linear temporal and description logic specifications from semi-structured 
textual sources, ensuring consistency through formal entailment checking. 
Similarly, Chen et al. (2025) integrate LLM-based semantic guidance with 
diffusion modeling to generate and refine rule sets over temporal knowledge 
graphs, demonstrating how probabilistic language models can contribute to 
interpretable rule generation. Within the field of fuzzy modeling, E et al. 
(2022) investigate the construction of fuzzy rule-based systems through fuzzy 
relational factorization to reduce dimensionality and improve interpretability. 
Yet these approaches remain primarily data-driven and do not leverage 
natural-language input. Although these contributions advance automated rule 
induction and hybrid neuro-symbolic reasoning, they predominantly address 
formal logic, graph reasoning, or data-centric contexts. They do not focus 
on the domain-specific knowledge engineering processes required for ESs.  
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In particular, existing research does not focus on the translation of natural-
language heuristics into fuzzy rules or on the semi-automatic design of 
membership functions and linguistic partitions that maintain expert 
interpretability. Against this background, this paper presents a hybrid 
approach integrating LLMs into the process of developing fuzzy rule bases 
for energy-aware ESs used to improve energy efficiency in manufacturing.

KNOWLEDGE ENGINEERING WORKFLOW

Following the introduction, this section describes the hybrid workflow for 
LLM-assisted knowledge engineering in the development of fuzzy rule bases 
for energy-aware ESs.

Workflow Overview

Figure 1 shows the overall workflow. LLM-supported functions are highlighted 
in green, and tasks performed by the energy manager, who coordinates energy 
management activities, are highlighted in gray. Following the identification 
of energy relevant machines, energy performance indicators (EnPIs) are 
set in accordance with ISO 50006 (A1), which form the quantitative basis 
for evaluating energy efficiency potentials (International Organization for 
Standardization, 2023). These indicators are selected by the energy manager 
in collaboration with process experts. In the next step, the LLM formalizes 
natural-language descriptions of EnPIs into structured, machine-interpretable 
representations (A2). The formalized EnPIs are then utilized to formulate a 
fuzzy rule base (A3). The fuzzy approach assumes that human experts often 
make decisions without precisely quantified information and therefore accounts 
conditions or conclusions that may be partially true or false (Liao, 2005). The 
rules are structured as IF-THEN statements. This ensures a machine-readable 
and applicable representation and allows for explicit and comprehensible 
functional transparency. The premise consists of EnPIs, which are assigned 
linguistic variables and linked using logical operators. The conclusion contains 
priority numbers, which are also assigned linguistic variables and represent 
a measure of the unrealized energy efficiency potential. The formulated rules 
are then formalized by the LLM (A4), which translates the verbal logic into 
consistent fuzzy syntax, verifies linguistic mappings, and validates logical 
coherence. Furthermore, the LLM proposes suitable membership functions for 
the fuzzy variables, such as triangular or trapezoidal shapes, and suggests initial 
parameter values (A5). Finally, the workflow concludes with an automatic 
visualization stage (A6), in which the LLM generates a Python script to plot 
membership functions and fuzzy inference surfaces. These visualizations 
support validation and communication between the energy manager and 
knowledge engineer, ensuring that the resulting rule base behaves transparently 
and remains explainable.

While the LLM accelerates repetitive formalization tasks and provides 
structured proposals, a knowledge engineer remains in the loop to critically 
review, validate, and refine these outputs, ensuring semantic precision and 
domain reliability. 
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Figure 1: SADT diagram of the LLM-assisted knowledge-formalization workflow. 

Code-Generation Pipeline

To operationalize the workflow described above, the code-generation pipeline 
(see Figure 2) transforms the specifications into importable Python modules. 
Specifications are provided either via a command-line wizard or by editing 
two canonical Markdown files (enpis.md, rules.md), which together define 
EnPI names, symbols, and formulas as well as fuzzy variables, linguistic 
partitions, and IF–THEN rules. From this input, the generator builds a 
schema-constrained prompt that fixes function signatures, imports, file 
layout, and naming conventions while instructing the model to emit code 
only. Inference produces an in-memory Python draft for the target artefact 
(e.g., EnPIs.py, FIS.py, or visualizer.py) under conservative decoding settings 
that prioritise complete, reproducible outputs.

Each draft then passes a syntactic and interface gate. The pipeline 
compiles the returned text in memory using Python’s built-in compile() 
function, which parses the source and returns a compiled representation 
suitable for execution. If a syntax error is detected, the draft is discarded 
and a deterministic implementation is rendered from the same Markdown 
specifications. This ensures that valid modules are produced even when the 
LLM emits an incomplete snippet and keeps the process robust for non-
specialists. In both the LLM and fallback paths, lightweight interface checks 
verify the required callables. Provenance is preserved by archiving the raw 
model draft and a short generation log, while only the accepted, syntactically 
valid module is written for downstream use. The resulting files enable direct 
integration into the Expert System Shell for Energy Efficiency (ESS4EE) to 
build an energy-aware ES (Ioshchikhes & Frank et al., 2025).
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Figure 2: Flowchart of the on-prem code-generation pipeline.

Large Language Model Setup and Configuration

The language model in this study runs entirely on premises to meet 
confidentiality, reproducibility, and predictable latency requirements. Its role 
is schema-constrained code synthesis. From concise, structured specifications 
of EnPIs and fuzzy rules, it produces self-contained Python modules that 
compile without manual editing. We selected the model Microsoft Phi-3-
mini-4k-instruct because it balances capability and efficiency for constrained 
scenarios (Abdin et al., 2024). The model has about three to four billion 
parameters and a context window of roughly 4,000 tokens, which is sufficient 
for our prompts and the small amount of in-prompt guidance used to enforce 
function signatures and file structure. 

The inference is executed locally. On Windows hosts with AMD graphics 
hardware, the model runs through ONNX Runtime GenAI with DirectML. 
ONNX Runtime GenAI is a high-performance execution engine for generative 
neural networks. It loads a serialized model graph in the open ONNX format 
and runs it with optimized kernels. On Windows, DirectML connects this 
engine to the installed GPU driver so the same model runs accelerated on a wide 
range of consumer hardware without vendor-specific code (Microsoft, 2025). 
If a suitable GPU is not present, the same prompts and decoding settings are 
executed through a Hugging Face Transformers stack on the CPU. Hugging 
Face Transformers is a widely used open-source library that provides model 
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definitions, tokenizers, and generation routines for many architectures (Jain, 
2022). In our setup it supplies the tokenizer and a reliable CPU inference path, 
so behavior and outputs remain consistent across machines. After a one-time 
download of the model snapshot, the pipeline operates offline and no inputs, 
prompts, or outputs leave the host system.

The generation process is configured for correctness and stability. We use a 
low sampling temperature and a bounded maximum number of new tokens 
so that the model favors complete outputs over creative variation. The 
prompts are scheme-constrained. They specify function signatures, required 
imports, and file layout, and explicitly instruct the model to return code 
only. To reduce memory use and improve inference efficiency, measured as 
higher generated-tokens-per-second, the model’s weights are quantized to 
four bits using activation-aware weight quantization (AWQ). This method 
takes activation statistics into account so that accuracy is preserved even 
when weights are stored with four-bit precision. In practice this keeps 
instruction-following quality high while lowering the memory footprint to a 
few gigabytes. Table 1 summarizes the LLM specifications.

Table 1: Technical summary of the local LLM configuration.

Model Microsoft Phi-3-mini-4k-instruct

Parameter scale ~3-4B parameters

Context window ~4,000 tokens

Quantization INT4 (AWQ); weight-only

Runtime backends ONNX Runtime GenAI (DirectML); CPU fallback via Hug-
ging Face Transformers

Deployment Fully on-prem; offline after initial snapshot

Decoding policy Low temperature; bounded max-new-tokens

Prompt design Schema-constrained templates

Reliability check Python compile()on each draft; deterministic template 
fallback on error

Privacy No task data leaves the host machine

Memory ~2–3 GB for INT4 weights (plus runtime overhead)

CASE STUDY: FOAM PANEL PRODUCTION LINE

The workflow shown in Figure 1 is demonstrated using the example of a 
foam panel production line. During this process, polymers are expanded by 
heat to produce foam cores for applications in aviation. The polymer panels 
pass through four consecutive zones: First, they are led into a preheating 
cabinet. In the preheating zone and in the two subsequent zones, resistance 
heaters heat the chamber air, while fans ensure its circulation. The actual 
foaming takes place in the subsequent foam cabinet, where the panels expand 
to roughly ten times their original volume. This expansion creates internal 
stresses that cause deformations. In the next straightening cabinet, these 
stresses are reduced, and deformations minimized by selectively activating 
infrared heaters. Finally, the panels are flattened in a hydraulic press. The 
overall material flow of the process is shown in Figure 3. 
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Figure 3: Material flow of the foam panel production line. Illustration based on (Erlach 
& Westkämper, 2009).

The starting point for identifying energy-efficiency potentials is the 
measured active electrical power of the individual consumers. In this use 
case, the energy-relevant information is the unproductive state, i.e., periods 
in which the consumers do not contribute to value creation. Detection of the 
unproductive state is performed by an algorithm that is not detailed here but 
is available in the full ES implementation (Ioshchikhes, 2025b).

To quantify the unproductive state, two EnPIs are defined: the non-
productive time factor (NPTF) and the non-productive energy factor (NPEF) 
(Dehning et al., 2019). The NPTF is the ratio of non-productive time npt  to 
the total observation time totalt ,

= np

total

t
NPTF

t
⋅100 %,

and the NPEF is the ratio of non-productive energy npE  to total energy totalE :

= np

total

E
NPEF

E
⋅100 %.

For both EnPIs, values near 0 % indicate a high share of value-adding 
operation, whereas values near 100  % indicate substantial potential for 
improvement. 

After the EnPIs are specified in Markdown or via the command-line 
wizard (see Figure 2), the fuzzy rule base is defined. Using NPTF and NPEF 
as inputs and the rule base given in Table 2, the priority score ζ  is computed 
by Mamdani inference (Mamdani & Assilian, 1975). The priority score is 
the result of the fuzzy system, which represents the extent of the unrealized 
energy efficiency potential. It takes values in the interval [0, 1]. Values close 
to 1 indicate a higher energy-efficiency potential. 

Table 2: Rule base for the ES of the foam panel production line.

Premise (IF) Consequent (THEN)

NPTF  is high AND NPEF is high ζ  is high

NPTF  is medium AND NPEF is high ζ  is high

NPTF  is low AND NPEF is high ζ  is high

NPTF is high AND NPEF  is medium ζ  is high

NPTF is medium AND NPEF  is medium ζ  is high

NPTF is low AND NPEF is medium ζ  is medium

NPTF is high AND NPEF is low ζ  is low

NPTF is medium AND NPEF  is low ζ  is low

NPTF is low AND NPEF  is low ζ  is low

Finally, the rule base together with the membership functions are formalized 
into Python code by the LLM. The generated visualization routine produces 
Figure 4. It visualizes the membership functions of the input and output 
variables and the resulting priority surface from the rule base, enabling 
experts to check that the linguistic partitions and IF–THEN rules yield the 
intended behavior.

EnPIs are computed for the observation period as specified in Table 3. The 
results assign high priority for efficiency improvement to the fan of the foam 
cabinet and to the heating of the straightening cabinet. They also indicate 
that opportunities for improvement arise in the heating of the preheating 
cabinet and the foam cabinet. Lower relevance for energy optimization 
measures is indicated for the fans in the preheating and straightening cabinet, 
as well as the infrared heating.

Figure 4: (a) Visualized membership functions and (b) rule base.
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Table 2: Rule base for the ES of the foam panel production line.

Premise (IF) Consequent (THEN)

NPTF  is high AND NPEF is high ζ  is high

NPTF  is medium AND NPEF is high ζ  is high

NPTF  is low AND NPEF is high ζ  is high

NPTF is high AND NPEF  is medium ζ  is high

NPTF is medium AND NPEF  is medium ζ  is high

NPTF is low AND NPEF is medium ζ  is medium

NPTF is high AND NPEF is low ζ  is low

NPTF is medium AND NPEF  is low ζ  is low

NPTF is low AND NPEF  is low ζ  is low

Finally, the rule base together with the membership functions are formalized 
into Python code by the LLM. The generated visualization routine produces 
Figure 4. It visualizes the membership functions of the input and output 
variables and the resulting priority surface from the rule base, enabling 
experts to check that the linguistic partitions and IF–THEN rules yield the 
intended behavior.

EnPIs are computed for the observation period as specified in Table 3. The 
results assign high priority for efficiency improvement to the fan of the foam 
cabinet and to the heating of the straightening cabinet. They also indicate 
that opportunities for improvement arise in the heating of the preheating 
cabinet and the foam cabinet. Lower relevance for energy optimization 
measures is indicated for the fans in the preheating and straightening cabinet, 
as well as the infrared heating.

Figure 4: (a) Visualized membership functions and (b) rule base.
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Table 3: Calculated EnPIs for the foam panel production line.

Consumer ttotal

in h
tnp

in h
Etotal

in kWh
Enp

in kWh
NPTF
in %

NPTF
in %

𝞯
in 1

Preheating fan

168.0 41.0 9116.4

192.3

0.2

2.1 0.4

Straightening fan 88.9 0.9 0.2

Foam fan 755.6 8.3 0.9

Straightening heating 516.9 5.7 0.6

Infrared heating 12.3 0.1 0.2

Foam heating 280.8 3.1 0.6

Preheating heating 297.1 3.3 0.6

CONCLUSION

This paper introduced a hybrid workflow that integrates LLMs into 
the development of fuzzy rule bases for energy-aware ESs. The approach 
accelerates knowledge formalization by enabling automated generation 
of membership functions, rule syntax, and visualization scripts, while 
preserving the transparency and interpretability of rule-based reasoning. 
Implemented fully on premises, the approach ensures confidentiality and 
consistent behavior across different hardware setups. The case study of a 
foam panel production line demonstrated that the LLM-assisted pipeline can 
reliably produce executable modules for energy performance evaluation and 
effectively highlight areas with high energy efficiency potential.

The LLM employed in this study served as a proof of concept and was not 
optimized or validated across diverse industrial scenarios. Future work will 
therefore focus on benchmarking and fine-tuning different models to improve 
reliability and domain transferability. Additional research will investigate 
adaptive feedback mechanisms involving human experts and operational 
data to iteratively refine the generated rule bases. Further integration with 
the ESS4EE will enable scalable deployment across production environments 
and support continuous improvement toward data-driven, transparent, and 
energy-efficient manufacturing.
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