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ABSTRACT

Expert systems offer a promising way to automatically identify energy efficiency
potentials in industry and thereby contribute to energy cost savings and decarbonization.
In these systems, domain-specific knowledge is embedded and linked to automated
analyses of measurement data. Until now, knowledge engineers have extracted,
structured, and represented the necessary domain-specific knowledge in a form usable
by expert systems, which is time-consuming and costly. This article presents a hybrid
approach that couples expert systems with large language models to support the work of
knowledge engineers. Energy performance indicators, selected by the energy manager,
serve to quantify changes in energy performance and reproduce the heuristic decision-
making of human experts on a quantitative basis. These indicators then form the basis
for a rule set that targets areas with the highest potential energy savings. For practical
implementation, a fuzzy rule base is applied because it captures decisions made under
imprecise information and allows conditions and conclusions that can be partially
true or false. Building the fuzzy rule base involves assigning membership functions to
input and output variables and defining their linguistic partitioning, since these choices
shape both sensitivity and interpretability. The rule base is implemented as generally
understandable IF-THEN rules. The premise consists of energy performance indicators
that are associated with linguistic variables and combined using logical operators. The
conclusion contains priority numbers, which are also associated with linguistic variables
and express the energy efficiency potential. In the hybrid setup presented in this article,
large language models formalize given energy performance indicators and fuzzy rules,
propose membership functions to populate the fuzzy rule base, and generate visualization
scripts in Python. This leads to accelerated development while preserving transparent,
comprehensible, and reproducible decision logic characteristic of expert systems. The
approach is demonstrated using a foam panel production line in the chemical industry.
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INTRODUCTION

The industrial sector plays a decisive role in achieving climate targets, as
it is the largest emitter of energy-related greenhouse gases in the European
Union (Hannah Ritchie, 2020). At the same time, industrial companies must
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ensure their global competitiveness. In this tension field, energy efficiency is
regarded as a key lever, since it contributes directly to emission reduction while
allowing production costs to be reduced (European Parliament, Council of
the European Union, 2023). Despite its relevance, the identification of energy
efficiency potentials in manufacturing is often constrained by organizational
and knowledge-related barriers, hindering subsequent realization efforts.
Surveys reveal that companies frequently lack awareness of suitable measures,
digital competencies among staff remain limited, and consulting resources
are scarce (ABB Ltd, 2022).

Expert systems (ESs) offer a promising way to address these obstacles
and support industrial companies in achieving both cost savings and
decarbonization goals. ESs are computer programs designed to replicate
the reasoning of human experts by integrating domain-specific knowledge
with automated analysis of measurement data. In the context of energy
management, such systems systematically identify efficiency potentials and
guide decision-making with fuzzy logic for improvement measures (Seyfried
et al.,, 2024). The development of ESs, however, relies on knowledge
engineers, who extract, structure, and formalize expert knowledge into
machine-usable representations. This process is labor-intensive and often
limits the scalability of ESs across industrial domains (Ioshchikhes & Zink et
al., 2025). To reduce the dependency on manual knowledge engineering and
to accelerate ES development, this paper proposes a hybrid approach that
employs large language models (LLMs) as assistants in the formalization
process. A complete substitution of conventional ESs is not intended.
While LLMs can also enhance energy efficiency, ESs remain essential for
ensuring transparency, reproducibility, and deterministic reasoning based on
explicitly formalized knowledge (Wu et al., 2025). In contrast, LLMs operate
probabilistically and generate responses without guaranteed consistency or
intrinsic explainability (Martens & Cap, 2025). Combining both paradigms
allows the transparency of ESs to be maintained while leveraging the
generative strengths of LLMs.

Recent works addressing knowledge engineering with LLMs have
increasingly explored how such models can support the extraction and
structuring of expert knowledge for rule-based or symbolic systems. Duranti et
al. (2025) combine LLM outputs with symbolic verification modules to derive
linear temporal and description logic specifications from semi-structured
textual sources, ensuring consistency through formal entailment checking.
Similarly, Chen et al. (2025) integrate LLM-based semantic guidance with
diffusion modeling to generate and refine rule sets over temporal knowledge
graphs, demonstrating how probabilistic language models can contribute to
interpretable rule generation. Within the field of fuzzy modeling, E et al.
(2022) investigate the construction of fuzzy rule-based systems through fuzzy
relational factorization to reduce dimensionality and improve interpretability.
Yet these approaches remain primarily data-driven and do not leverage
natural-language input. Although these contributions advance automated rule
induction and hybrid neuro-symbolic reasoning, they predominantly address
formal logic, graph reasoning, or data-centric contexts. They do not focus
on the domain-specific knowledge engineering processes required for ESs.
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In particular, existing research does not focus on the translation of natural-
language heuristics into fuzzy rules or on the semi-automatic design of
membership functions and linguistic partitions that maintain expert
interpretability. Against this background, this paper presents a hybrid
approach integrating LLMs into the process of developing fuzzy rule bases
for energy-aware ESs used to improve energy efficiency in manufacturing.

KNOWLEDGE ENGINEERING WORKFLOW

Following the introduction, this section describes the hybrid workflow for
LLM-assisted knowledge engineering in the development of fuzzy rule bases
for energy-aware ESs.

Workflow Overview

Figure 1 shows the overall workflow. LLM-supported functions are highlighted
in green, and tasks performed by the energy manager, who coordinates energy
management activities, are highlighted in gray. Following the identification
of energy relevant machines, energy performance indicators (EnPIs) are
set in accordance with ISO 50006 (A1), which form the quantitative basis
for evaluating energy efficiency potentials (International Organization for
Standardization, 2023). These indicators are selected by the energy manager
in collaboration with process experts. In the next step, the LLM formalizes
natural-language descriptions of EnPls into structured, machine-interpretable
representations (A2). The formalized EnPIs are then utilized to formulate a
fuzzy rule base (A3). The fuzzy approach assumes that human experts often
make decisions without precisely quantified information and therefore accounts
conditions or conclusions that may be partially true or false (Liao, 2005). The
rules are structured as [F-THEN statements. This ensures a machine-readable
and applicable representation and allows for explicit and comprehensible
functional transparency. The premise consists of EnPlIs, which are assigned
linguistic variables and linked using logical operators. The conclusion contains
priority numbers, which are also assigned linguistic variables and represent
a measure of the unrealized energy efficiency potential. The formulated rules
are then formalized by the LLM (A4), which translates the verbal logic into
consistent fuzzy syntax, verifies linguistic mappings, and validates logical
coherence. Furthermore, the LLM proposes suitable membership functions for
the fuzzy variables, such as triangular or trapezoidal shapes, and suggests initial
parameter values (AS5). Finally, the workflow concludes with an automatic
visualization stage (A6), in which the LLM generates a Python script to plot
membership functions and fuzzy inference surfaces. These visualizations
support validation and communication between the energy manager and
knowledge engineer, ensuring that the resulting rule base behaves transparently
and remains explainable.

While the LLM accelerates repetitive formalization tasks and provides
structured proposals, a knowledge engineer remains in the loop to critically
review, validate, and refine these outputs, ensuring semantic precision and
domain reliability.
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Figure 1: SADT diagram of the LLM-assisted knowledge-formalization workflow.

Code-Generation Pipeline

To operationalize the workflow described above, the code-generation pipeline
(see Figure 2) transforms the specifications into importable Python modules.
Specifications are provided either via a command-line wizard or by editing
two canonical Markdown files (enpis.md, rules.md), which together define
EnPI names, symbols, and formulas as well as fuzzy variables, linguistic
partitions, and IF-THEN rules. From this input, the generator builds a
schema-constrained prompt that fixes function signatures, imports, file
layout, and naming conventions while instructing the model to emit code
only. Inference produces an in-memory Python draft for the target artefact
(e.g., EnPIs.py, FIS.py, or visualizer.py) under conservative decoding settings
that prioritise complete, reproducible outputs.

Each draft then passes a syntactic and interface gate. The pipeline
compiles the returned text in memory using Python’s built-in compile ()
function, which parses the source and returns a compiled representation
suitable for execution. If a syntax error is detected, the draft is discarded
and a deterministic implementation is rendered from the same Markdown
specifications. This ensures that valid modules are produced even when the
LLM emits an incomplete snippet and keeps the process robust for non-
specialists. In both the LLM and fallback paths, lightweight interface checks
verify the required callables. Provenance is preserved by archiving the raw
model draft and a short generation log, while only the accepted, syntactically
valid module is written for downstream use. The resulting files enable direct
integration into the Expert System Shell for Energy Efficiency (ESS4EE) to
build an energy-aware ES (Ioshchikhes & Frank et al., 2025).
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Figure 2: Flowchart of the on-prem code-generation pipeline.

Large Language Model Setup and Configuration

The language model in this study runs entirely on premises to meet
confidentiality, reproducibility, and predictable latency requirements. Its role
is schema-constrained code synthesis. From concise, structured specifications
of EnPIs and fuzzy rules, it produces self-contained Python modules that
compile without manual editing. We selected the model Microsoft Phi-3-
mini-4k-instruct because it balances capability and efficiency for constrained
scenarios (Abdin et al., 2024). The model has about three to four billion
parameters and a context window of roughly 4,000 tokens, which is sufficient
for our prompts and the small amount of in-prompt guidance used to enforce
function signatures and file structure.

The inference is executed locally. On Windows hosts with AMD graphics
hardware, the model runs through ONNX Runtime GenAl with DirectML.
ONNX Runtime GenAl is a high-performance execution engine for generative
neural networks. It loads a serialized model graph in the open ONNX format
and runs it with optimized kernels. On Windows, DirectML connects this
engine to the installed GPU driver so the same model runs accelerated on a wide
range of consumer hardware without vendor-specific code (Microsoft, 2025).
If a suitable GPU is not present, the same prompts and decoding settings are
executed through a Hugging Face Transformers stack on the CPU. Hugging
Face Transformers is a widely used open-source library that provides model
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definitions, tokenizers, and generation routines for many architectures (Jain,
2022). In our setup it supplies the tokenizer and a reliable CPU inference path,
so behavior and outputs remain consistent across machines. After a one-time
download of the model snapshot, the pipeline operates offline and no inputs,
prompts, or outputs leave the host system.

The generation process is configured for correctness and stability. We use a
low sampling temperature and a bounded maximum number of new tokens
so that the model favors complete outputs over creative variation. The
prompts are scheme-constrained. They specify function signatures, required
imports, and file layout, and explicitly instruct the model to return code
only. To reduce memory use and improve inference efficiency, measured as
higher generated-tokens-per-second, the model’s weights are quantized to
four bits using activation-aware weight quantization (AWQ). This method
takes activation statistics into account so that accuracy is preserved even
when weights are stored with four-bit precision. In practice this keeps
instruction-following quality high while lowering the memory footprint to a
few gigabytes. Table 1 summarizes the LLM specifications.

Table 1: Technical summary of the local LLM configuration.

Model Microsoft Phi-3-mini-4k-instruct
Parameter scale ~3-4B parameters

Context window ~4,000 tokens

Quantization INT4 (AWQ); weight-only

Runtime backends ~ONNX Runtime GenAl (DirectML); CPU fallback via Hug-
ging Face Transformers

Deployment Fully on-prem; offline after initial snapshot

Decoding policy Low temperature; bounded max-new-tokens

Prompt design Schema-constrained templates

Reliability check Python compile () on each draft; deterministic template
fallback on error

Privacy No task data leaves the host machine

Memory ~2-3 GB for INT4 weights (plus runtime overhead)

CASE STUDY: FOAM PANEL PRODUCTION LINE

The workflow shown in Figure 1 is demonstrated using the example of a
foam panel production line. During this process, polymers are expanded by
heat to produce foam cores for applications in aviation. The polymer panels
pass through four consecutive zones: First, they are led into a preheating
cabinet. In the preheating zone and in the two subsequent zones, resistance
heaters heat the chamber air, while fans ensure its circulation. The actual
foaming takes place in the subsequent foam cabinet, where the panels expand
to roughly ten times their original volume. This expansion creates internal
stresses that cause deformations. In the next straightening cabinet, these
stresses are reduced, and deformations minimized by selectively activating
infrared heaters. Finally, the panels are flattened in a hydraulic press. The
overall material flow of the process is shown in Figure 3.
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Figure 3: Material flow of the foam panel production line. lllustration based on (Erlach
& Westkamper, 2009).

The starting point for identifying energy-efficiency potentials is the
measured active electrical power of the individual consumers. In this use
case, the energy-relevant information is the unproductive state, i.e., periods
in which the consumers do not contribute to value creation. Detection of the
unproductive state is performed by an algorithm that is not detailed here but
is available in the full ES implementation (Ioshchikhes, 2025b).

To quantify the unproductive state, two EnPIs are defined: the non-
productive time factor (NPTF) and the non-productive energy factor (NPEF)
(Dehning et al., 2019). The NPTF is the ratio of non-productive time #,, to
the total observation time £,

t
NPTF = —-.100 %,

total

and the NPEEF is the ratio of non-productive energy Enp to total energy E.:

En
NPEF =—="-.100 %.

‘total

For both EnPIs, values near 0 % indicate a high share of value-adding
operation, whereas values near 100 % indicate substantial potential for
improvement.

After the EnPlIs are specified in Markdown or via the command-line
wizard (see Figure 2), the fuzzy rule base is defined. Using NPTF and NPEF
as inputs and the rule base given in Table 2, the priority score ¢ is computed
by Mamdani inference (Mamdani & Assilian, 1975). The priority score is
the result of the fuzzy system, which represents the extent of the unrealized
energy efficiency potential. It takes values in the interval [0, 1]. Values close
to 1 indicate a higher energy-efficiency potential.
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Table 2: Rule base for the ES of the foam panel production line.

Premise (IF)

Consequent (THEN)

NPTF is high AND NPEF is high

NPTF is medium AND NPEF is high
NPTF is low AND NPEF is high

NPTF is high AND NPEF is medium
NPTF is medium AND NPEF is medium
NPTF is low AND NPEF is medium
NPTF is high AND NPEF is low

NPTF is medium AND NPEF is low

NPTF is low AND NPEF is low

¢ is high
¢ is high
¢ is high
¢ is high
¢ is high
¢ is medium
¢ is low
¢ is low

¢ is low

Finally, the rule base together with the membership functions are formalized
into Python code by the LLM. The generated visualization routine produces
Figure 4. It visualizes the membership functions of the input and output
variables and the resulting priority surface from the rule base, enabling
experts to check that the linguistic partitions and IF-THEN rules yield the

intended behavior.

EnPIs are computed for the observation period as specified in Table 3. The
results assign high priority for efficiency improvement to the fan of the foam
cabinet and to the heating of the straightening cabinet. They also indicate
that opportunities for improvement arise in the heating of the preheating
cabinet and the foam cabinet. Lower relevance for energy optimization
measures is indicated for the fans in the preheating and straightening cabinet,

as well as the infrared heating.
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Figure 4: (a) Visualized membership functions and (b) rule base.
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Table 3: Calculated EnPls for the foam panel production line.

Consumer L L, E_. E, NPTF NPTF ¢

inh inh inkWh inkWh in % in % inl
Preheating fan 192.3 21 0.4
Straightening fan 88.9 0.9 0.2
Foam fan 755.6 8.3 0.9
Straightening heating 168.0 41.0 9116.4 516.9 0.2 5.7 0.6
Infrared heating 12.3 0.1 0.2
Foam heating 280.8 31 0.6
Preheating heating 297.1 3.3 0.6

CONCLUSION

This paper introduced a hybrid workflow that integrates LLMs into
the development of fuzzy rule bases for energy-aware ESs. The approach
accelerates knowledge formalization by enabling automated generation
of membership functions, rule syntax, and visualization scripts, while
preserving the transparency and interpretability of rule-based reasoning.
Implemented fully on premises, the approach ensures confidentiality and
consistent behavior across different hardware setups. The case study of a
foam panel production line demonstrated that the LLM-assisted pipeline can
reliably produce executable modules for energy performance evaluation and
effectively highlight areas with high energy efficiency potential.

The LLM employed in this study served as a proof of concept and was not
optimized or validated across diverse industrial scenarios. Future work will
therefore focus on benchmarking and fine-tuning different models to improve
reliability and domain transferability. Additional research will investigate
adaptive feedback mechanisms involving human experts and operational
data to iteratively refine the generated rule bases. Further integration with
the ESS4EE will enable scalable deployment across production environments
and support continuous improvement toward data-driven, transparent, and
energy-efficient manufacturing.
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