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ABSTRACT

This paper concerns an automatic object tracking system for Point-Tilt-Zoom (PTZ) 
cameras using image recognition technology, aimed at a new type of airport air traffic 
control system known as Remote Tower. Airport air traffic controllers work by visual 
observation of the airport and its vicinity from a glass-walled room at the top of a con-
trol tower. In Remote Tower, a “panoramic” image from cameras at the airport replaces 
the out-of-the-window view, allowing the physical building to be eliminated and the 
control service to be moved away the airport. The PTZ camera serves the role of binoc-
ulars, allowing close-up views of aircraft both moving on the airport surface and flying 
in the vicinity. Automatic PTZ tracking of selected objects relieves operator workload, 
However, tracking based solely on image recognition processing of PTZ video frames 
presents challenges, such as tracking switching to an unintended target when multiple 
aircraft appear within the frame, and continuity of tracking when the view of target air-
craft is temporarily occluded by obstacles. To address such situations, we investigated 
using object orientation in addition to object identification. Preliminary trials confirmed 
improved tracking stability and resistance to target switching for slow-moving aircraft 
that cross in the PTZ view. This study systematises the control challenges of Automatic 
Object Tracking using image recognition and discusses potential solutions to these 
issues.
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INTRODUCTION

In recent years, in addition to classical machine vision algorithms, Artificial 
Intelligence (AI)-based techniques such as image segmentation and object 
detection and recognition have been utilised in the transport sector for vari-
ous purposes (Zhang, 2025). Object detection for collision avoidance is used 
in both driver assistance or autonomous “self-driving” using on-board cam-
eras(Turay, 2022), and in traffic monitoring and management using roadside 
cameras (Dilek, 2023). One application in the field of aviation is “Remote 
Tower” (Fürstenau, 2022). Airport air traffic controllers work by observing 
traffic on the airport surface and flying in the vicinity from a glass-walled 

https://doi.org/10.54941/ahfe1007098
https://creativecommons.org/licenses/by-nc-nd/4.0/


396� Inoue et al. 

room on top of a control tower building. Remote Tower uses video cameras 
to replace the out-of-the-window view with a wide field-of-view “panorama” 
image from video cameras on top of a mast and allowing controllers to pro-
vide services from a remote location. Digitization of the image streams also 
presents an opportunity to develop functions to support controller tasks and 
improve situational awareness. 

Airport air traffic controllers must maintain a continuous visual watch, 
not only of aircraft and vehicles on the airport surface, which are slow-mov-
ing and easily visible, but also of aircraft flying within a few kilometers of 
the airport, which are harder to find and keep track of. Controllers some-
times desire a close-up view of a specific aircraft or vehicle of interest. In 
a conventional control tower, they would use binoculars, and in a Remote 
Tower, this facility is often provided using a pan-tilt-zoom (PTZ) camera. 
Digitilazation allows the introduction of an automatic PTZ tracking feature 
to enable the controller to share attention with other tasks while monitoring 
the PTZ image, something not possible with binoculars. 

We have developed a PTZ tracking function, an overview of which is 
shown in Figure 1. The tracking function uses two inputs: “optical”, based 
on recognising and tracking aircraft or ground vehicles in the PTZ camera 
image, and “sensor”, which uses position and height information from a sur-
veillance sensor such as a radar, multilateration (a triangulation system using 
radio signals from transponders equipped in each vehicle), or position infor-
mation broadcast by the vehicles themselves (ADS-B). In use, the air traffic 
controller selects the target aircraft or vehicle from a list of aircraft that are 
being tracked by the airport surveillance system. The position and height 
information from the surveillance system is then used to cue to PTZ camera 
to point in the target’s direction. Subsequently, the system utilises image rec-
ognition to locate objects within the camera’s field of view that match the 
desired target’s class (aircraft, vehicle), and then continuously and smoothly 
adjusts the PTZ direction to keep the target close the centre of the image. 
This paper discusses the challenges and solutions relating to this function.

Figure 1: Overview of the automatic tracking system using PTZ cameras.
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CHALLENGES IN AUTOMATIC OBJECT TRACKING USING IMAGE 
RECOGNITION

We developed the PTZ tracking function based on an earlier-developed 
function for recognising aircraft and vehicles at airports and their surround-
ings in video images using the You Only Look Once (YOLO) convolutional 
neural network-based object detection framework; specifically, YOLOv8. 
Traditional methods for recognising arbitrary targets in images require a 
two-step process: extraction of portions of the image that may contain target 
objects (segmentation), then  searching the candidate regions to identify tar-
get objects and determine their precise positions. YOLO, on the other hand, 
has the advantage of carrying out segmentation and target extraction and rec-
ognition in a single step (as its name ‘you only look once’ implies), enabling 
rapid processing. Segments are extracted as rectangular bounding boxes that 
contain objects of recognized classes, along with a confidence value.

In our initial implementation of the tracking function, the centre of the 
detected segment’s bounding box was calculated as an approximate target 
position. The PTZ pointing controller then used changes in this position over 
several frames to estimate the direction and speed of its apparent motion 
(velocity vector). Although this approach is simple to implement, it has issues 
caused by the fundamental problem of not being able to recognize specific 
objects: YOLO simply detects object classes in each frame and cannot detect 
a specific previously-observed instance of a given object class. This leads to 
target tracking “switching”. While tracking one object, if another object of 
the same object class but with a higher confidence value enters the frame, 
tracking may shift to following that object instead. A similar issue occurs 
when an object being tracked is temporarily lost from view (e.g., if hidden 
by an obstacle). The object’s velocity vector may be used to continue to move 
the PTZ open-loop based on the last known velocity vector and hoping to 
re-acquire the target, but if another vehicle of the same object class enters the 
view, it may be mistaken for the target object.

As our first attempt to suppress this switching phenomenon, we attempted 
to discriminate the target from other objects by comparing their current 
movements with the past movement of the target object. A polynomial func-
tion is estimated that interpolates between two linear vectors derived from 
the “last position of the past movement” and the “velocity of the past move-
ment”, and the “first position of the current movement” and the “velocity of 
the current movement”, which are calculated from segment bounding boxes 
as described above. Current and future movements are judged to be closer 
together when the coefficients for the cubic “change in acceleration” and the 
quadratic “acceleration” terms of the interpolating polynomial are smaller.

Figure 2: Basic idea of estimation of movement from velocity data.
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Figure 2 illustrates the concept of the method. Fig. 2(a) shows the past 
movement of the target object being tracked and the current movement of 
a candidate target. If they can be connected almost linearly as shown in 
Fig. 2(b), the values of the quadratic and cubic terms of the interpolating 
polynomial will be small. On the other hand, if the segments are significantly 
linearly disjointed as shown in Fig. 2(c), the cubic coefficient will be large. 
The candidate with the smallest interpolating polynomial coefficient values 
is therefore judged to be the target being tracked. We evaluated the method 
using out testbed system with live and replay video from our Sendai airport 
branch cameras. Although the principle was found to be valid, when aircraft 
crossed at slow speeds, large frame-to-frame fluctuations in segment bound-
ing boxes tended to occur, preventing reliable estimation of velocity vectors. 
Furthermore, when object detection was intermittent from frame to frame 
due to temporary occlusion, resulting in gaps in the data, the interpolat-
ing polynomials became smoother, leading to instances where other targets 
were misidentified. Figure 3 shows a PTZ image at the time of an impending 
switch between a tracked target, the aircraft at the centre of the frame facing 
away from the camera which is moving diagonally towards the upper right, 
and the left-facing aircraft visible to the upper left of the target which has 
moved from the right. 

Figure 3: Example situation where a switch occurred.

Figures 4 shows the time histories of the detected movement across the 
view of the true target (blue trace) and switched target an example of the 
occurrence of a ‘Switch’. The vertical axis shows the azimuth angle of the 
PTZ camera, and the horizontal axis shows time t. (The azimuth zero value 
and time t = 0 values are not important here.) The aircraft “cross” paths 
between t = 10s and t = 22s, indicated by  vertical blue lines. At around t = 22 
seconds, the detection of the target aircraft became somewhat unstable for 
about 1s, shown by red circle. Consequently, the movement of the “switched 
target” aircraft became more closely correlated with the past movements 
of the target than the actual target, leading to a switch in tracking (black 
arrow). 
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Figure 4: State of the coordinates where the switch occurred in Figure 3.

Measures to address this issue necessitates careful consideration of trade-
offs. For example, averaging unstable states might resolve the problem in the 
scenario above, but may reduce the reliability of tracking during manoeuvres 
such as sharp turns. When an object is moving slowly, attempting to derive 
velocity vector from its image segmentation bounding boxes proves prob-
lematic as frame-to-frame fluctuations in the bounding box introduces noise. 
This highlights the necessity for techniques specifically designed to address 
such issues.

OBJECT IDENTIFICATION BASED ON ORIENTATION

We investigated whether continuous tracking of target aircraft could be 
achieved even in crossing situations by using aircraft orientation obtained 
using the “Pose” feature of YOLOv8. As stated above, when an object moves 
across the video image at low speed, fluctuations in the segmentation bound-
ing box lead to fluctuations in the object’s estimated position, introducing 
noise into its velocity vector. This creates a situation where track using object 
detection alone becomes difficult. Therefore, we investigated utilising object 
orientation information as an additional detection parameter by using the 
YOLO ‘Pose’ feature to recognise aircraft orientation.

Figure 5: Example of annotation data creation for aircraft attitude recognition.
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Orientation recognition was trained by annotating a set of aircraft images 
with six points—nose, fuselage, right wing, left wing, tail, and vertical tail 
fin—as shown in Figure 5. The connection relationships between each posi-
tion—such as the nose and body, or the tail and tail wing tip—were also 
defined to enable recognition of component parts even when only a portion 
of the aircraft is visible. Approximately 20,000 annotation data points for 
orientation recognition were created from daytime images. 

Figure 6 illustrates an example of orientation recognition from the image 
of an aircraft against a complex airport background. Although the aircraft’s 
right wing is not visible, its orientation is recognised from the remaining 
visible components comprising the nose and body, the body and left wing 
tip, the body and tail, and the tail and vertical tail wing tip. Using “pose” 
information, a mechanism has been constructed to estimate the direction in 
which an aircraft is facing.

Figure 6: Example of aircraft posture recognition and target plane tracking.

We applied the orientation recognition to improve the accuracy of the 
velocity vector estimate. Instead of the centre of the object’s segment bound-
ing box, which can be unstable at low speeds, we utilised the tip of the tail 
fin obtained from posture recognition as the tracking point. The reasons for 
selecting the tail fin tip are that it is visible regardless of the direction the 
aircraft is facing, and it is less likely to be occluded by other aircraft and 
structures on the airport surface, giving more stable tracking. In preliminary 
test using video images from Sendai airport, using the tail fin tip reduced 
fluctuations in object position compared to the previous method, particu-
larly in the PTZ azimuth direction (i.e. horizontally across the image frame). 
By utilising two parameters derived from image recognition - the direction 
derived from the aircraft’s orientation and the velocity vector derived from 
the tracking point - a mechanism has been established that is resilient to sit-
uations where tracking would previously have “switched” from the intended 
target to another object.

Moreover, by recognising aircraft attitude based on the component parts 
determined from visible reference points - such as the nose and body, or the 
left wing tip and body - it is also possible to determine when the view of 
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the aircraft becomes obstructed. For example, if the initial visible nose-body 
section cannot be identified, and the number of component parts that cannot 
be identified increases with time, it can be determined that the aircraft has 
become hidden. This will enable better judgement of the timing to switch to 
PTZ control from closed-loop tracking to open-loop “coasting” based on 
estimated velocity vector, or from optical to surveillance sensor mode.

On the other hand, it is anticipated that using orientation information for 
tracking may prove difficult in the case when multiple aircraft facing in the 
same direction such as traffic jam situations on the taxi way are concentrated 
in the image frame.

CONCLUSION 

In the case study, we could determine the aircraft’s orientation through image 
recognition. By utilising this orientation recognition result as a determination 
parameter for tracking, we confirmed that continuous tracking is achiev-
able even in situations where automatic target tracking would previously be 
impossible using only velocity vectors.
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