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ABSTRACT

The coming of autonomous vehicles promises a “passenger economy,” a vision 
jeopardized by the challenge of kinetosis (motion sickness). Effective mitigation 
requires non-invasive, predictive monitoring, yet current methods are impractical. 
This paper presents a robust methodology that validates a synergistic fusion of 
thermal and visible-light imaging as a reliable respiratory biomarker. Our system 
employs a thermal camera to track temperature differentials at the nostrils and an RGB 
camera to monitor thoraco-abdominal movements. We introduce a real-time signal 
processing pipeline featuring: (1) dynamic, multi-modal region-of-interest tracking, 
(2) independent signal “activity gating” to reject noise, and (3) a temporal peak-fusion 
algorithm to compute a single, robust breathing rate. The primary contribution is 
the demonstration of this system’s technical feasibility and resilience to real-world 
failure modes. In a pilot study, we demonstrate high accuracy against a ground-truth 
metric and, crucially, show the system maintains a stable output during facial and 
torso occlusions that would cause single-modality systems to fail. This robust, non-
invasive system represents an important technical step toward truly human-centric 
autonomous vehicles such as the C2CBridge Vehicle.
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INTRODUCTION

Autonomous vehicles are speculated to redefine future mobility, freeing 
occupants from the task of driving and unlocking a new “passenger economy” 
(Strategy Analytics, 2017). However, this transition from active driver to 
passive passenger introduces a series of human-factor impediments. One of 
the main ones being kinetosis (or motion sickness). The incidence of motion 
sickness is expected to surge as passengers engage in non-driving-related 
activities such as reading or screen-based work during their trips (Diels and 
Bos, 2016).

This discomfort (kinetosis) arises from a “nauseogenic triad” inherent to 
the autonomous nature of the vehicle:
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1.	 Sensory Conflict: The mismatch between a visually static interior and the 
vestibular system’s sensation of motion.

2.	 Lack of Control: The passenger’s inability to physically control the 
vehicle’s path and trajectory.

3.	 Anticipation Failure: The inability to predict the vehicle’s upcoming 
movements (Reason and Brand, 1975).

Widespread passenger discomfort could threaten to undermine the value 
proposition of autonomous vehicles. To try and mitigate this, one approach 
could be for the vehicle to be able to detect the onset of distress before it 
reaches the threshold of conscious nausea.

Current assessment methods are unsuitable for this task. Subjective scales 
(e.g., M-SSQ) are retrospective and intrusive (Golding, 2016). Objective, 
contact-based physiological sensors (such as ECG or EGG) are too invasive 
for a consumer environment. This creates a critical need for a monitoring 
paradigm that is simultaneously objective, non-invasive, predictive, and 
robust.

This paper proposes a solution by validating respiration as a key predictive 
biomarker. The physiological link between nausea and respiration is well-
established in research; the emetic (vomiting) reflex is a respiratory event 
coordinated by the autonomic nervous system (Chang et al., 2010). Previous 
studies indicate that changes in respiratory rate and stability often precede 
the conscious perception of nausea (Al-Naji and Chahl, 2017).

Our contribution is a synergistic sensing-fusion system that non-
invasively measures respiration with high robustness. We fuse data from two 
complementary, low-cost modalities:

1.	 Thermal Imaging: Monitoring temperature oscillations at the nostrils 
caused by inhalation (cool air) and exhalation (warm air).

2.	 Visible-Light (RGB) Imaging: Monitoring subtle, periodic intensity 
changes on the upper torso caused by thoraco-abdominal respiratory 
movements.

By fusing these two signals (Figure 1), our system overcomes the individual 
weaknesses of each modality, creating a reliable wellness biomarker to enable 
pre-emptive HMI interventions.

Figure 1: Pipeline of the synergistic fusion system.
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RELATED WORK

Contactless Respiration Monitoring

Thermal Imaging: Thermal cameras can detect the subtle temperature 
differential between ambient air and inhaled/exhaled breath (See Figure 2). 
This method has been successfully used to monitor respiratory rates in 
various contexts (Al-Naji et al., 2019;  2023). Its primary advantage is its 
effectiveness in variable and complete darkness. However, it is sensitive to 
occlusions.

Figure 2: Thermal changes in the nostril area .

Visible-Light (RGB) Imaging: Standard RGB cameras can track respiration 
by measuring periodic movements, often by tracking optical flow or mean 
pixel intensity of a chest or thorax area (D’mello-Johnson et al., 2017). While 
low-cost, this method requires adequate ambient light and can be spoofed by 
a passenger’s gross body movements. The Thorax (RGB) signal processing 
pipeline is shown in the following figure:

Figure 3: (Top) The raw signal extracted from the chest ROI, showing significant noise 
and baseline drift. (Middle) The same signal after applying a 2nd-order Butterworth 
bandpass filter (0.1-0.5 Hz), which isolates the respiratory waveform. (Bottom) The 
final peak detection step, where each “x” marks a detected breath on the filtered 
signal, used to calculate the final BPM.
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Sensor Fusion for Robustness

Given the in-vehicle environment’s challenges, relying on a single modality is 
not enough. The “synergetic use” of multiple sensing techniques offers a path 
to greater robustness (Viola and Jones, 2001). Our work adapts this concept 
specifically for kinetosis monitoring, where robustness is of uppermost 
importance.

METHODOLOGY

Our system is implemented in MATLAB and built upon the described dual-
camera setup and a real-time processing pipeline:

Figure 4: Algorithmic pipeline.

Our system is a multi-component algorithm that transforms raw pixel data 
into a respiratory rate, as shown in Figure 2. The Thermal camera captures a 
raw thermal array ( )THMI  and a co-registered visible-light image ( )RGB TI − . The 
RGB Camera captures a high-resolution color feed of the passenger’s upper 
torso ( ).RGB EXTI −

Component 1—Cross-Modal ROI Localization
We use a Cascade Object Detector on the visible-light feeds 

( ),  RGB T RGB EXTI I− −  to locate the passenger’s face. The Nostril ROI 

( )nostrilROI  and ( )chestROI  are then defined geometrically. To prevent 

jitter, the  nostrilROI position is smoothed using an EMA with 0.25α =   
A “coasting” logic maintains the ROIs for 15 frames if detection is temporarily 
lost.

Component 2—Voxel-Based and Motion-Base Thermal/Visible Signal 
Extraction
The respiratory signal is extracted from the thermal data by analyzing the 
voxels (volume pixels) within the nostrilROI . We employ a Minima Selection 
technique, as the inhalation of cool air provides the most robust signal. 

( ) ( )( ) ( )min , ,  , .THMth nostrilS t I x y t x y ROI= ∀ ∈  At the same time, the chest 
respiratory signal is extracted by tracking Mean Intensity Modulation within 
the chestROI . As the chest expands and contracts, the mean grayscale value of the 
region modulates periodically ( ) ( )( ) ( ), ,  , .vis Gray chestS t mean I x y t x y ROI= ∀ ∈

Component 4—Robust Fusion & Rate Estimation
The raw signals, thS  and visS  are processed in a final fusion module:
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1.	 Filtering: Both camera signals are passed through a 2nd-order, zero-
phase Butterworth bandpass filter ( ) 0,1 0,5 Hz−  to isolate the respiratory 
waveform.

2.	 Activity Gating: The system calculates the standard deviation of the 
raw signal over a 5-second window. If the signal’s variance is below a 
threshold ( ) 0.5, 0.3visthτ τ= =  it is considered “inactive” and is ignored by 
the peak detector.

3.	 Temporal Peak-Matching: An algorithm is run on all active signals. 
A temporal fusion algorithm then combines the peak lists. This logic 
prioritizes thermal peaks but “claims” any matching visible-light peaks 
within a 0.75s window. Unclaimed visible peaks are also counted, creating 
a “best-of-both” signal.

4.	 Rate Calculation: The final fused respiratory rate is calculated from the 
total fused breath count over the time window.

METHODOLOGY

To validate the technical feasibility, accuracy, and robustness of our fusion 
system, we conducted a two-part pilot study. The goal was to first, quantify 
the system’s accuracy against a ground truth and to second, demonstrate the 
algorithm’s resilience to common signal-loss scenarios that might occur in 
shared mobility vehicles. 

Pilot Validation of Accuracy: A ground-truth respiratory rate was 
established by manual breath counting through a custom application. The 
volunteer was instructed to breathe at three distinct paces for 60 seconds 
each: Normal (Eupnea), Slow (Bradypnea), and Fast (Tachypnea). The mean 
respiratory rate from our system was compared against the ground truth. 
The results (summarized in Table 1) show a good degree of accuracy across 
the physiological range, with a mean absolute error of less than 1 BPM.

Table 1: System accuracy validation. Comparison of the system’s 
fused respiratory rate against the ground truth at three distinct, 
controlled breathing paces.

Condition Ground Truth Fused System Absolute Error

Slow breathing 8.0 BPM 8.9 BPM 0.9 BPM

Normal breathing 14.0 BPM 14.7 BPM 0.7 BPM

Fast breathing 22.0 BPM 21.2 BPM 0.2 BPM

Demonstration of Fusion Robustness: To simulate real-world challenges 
that might be encountered in the C2CBridge-Vehicle, we recorded a 
continuous session where the subject performed two specific occlusion events 
while breathing normally:

1.	 Facial Occlusion (5–10s): The subject placed a hand over their nose and 
mouth, occluding the nostrilROI .

2.	 Torso Occlusion (13–18s): The subject held a book over their upper 
chest, occluding the .chestROI  
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During the facial occlusion, the amplitude of the thermal signal dropped 
below our specified thτ . The system correctly ignored this input and derived 
the respiratory rate solely from the active chest signal. During the torso 
occlusion, the visible light signal flattened. The system identified this and 
relied exclusively on the clean thermal signal. The final fused output remained 
stable and accurate throughout both events, demonstrating robustness 
critical for a real-world deployment (Figure 5).

Figure 5: Demonstration of the robust fusion algorithm. This graph shows the system’s 
response to simulated occlusion events. The plot shows the filtered (solid) and raw 
(dotted) signals for the nostril (blue) and thorax (red).

DISCUSSION

The primary contribution of this work is the technical validation of a system 
for respiratory monitoring. Our pilot results confirm two points. First, the 
system is accurate (Table 1). Second, and more importantly, the system is 
robust (Figure 5).

In a dynamic in-vehicle environment, transient occlusions are inevitable. 
A system relying on a single modality would suffer from frequent data 
dropouts. Our activity-gated fusion logic overcomes this limitation, ensuring 
a stable, continuous output.

We acknowledge the limitations of this pilot study. The validation was 
performed in a static environment. However, as a proof-of-concept, these 
results successfully demonstrate the technical feasibility and core advantages 
of our fusion-based approach, establishing the necessary foundation for 
future, larger-scale studies on kinetosis prediction.

CONCLUSION AND FUTURE WORK

This conference paper presents a non-invasive system for monitoring 
passenger respiration by synergistically fusing thermal and RGB camera 
data. Through a pilot study, we have demonstrated accuracy and more 
importantly, its robustness to common occlusion scenarios.

Future work will focus on:

1.	 Predictive Modeling: Using this system to extract features of Respiratory 
Rate Variability and train a machine learning classifier to detect 
physiological precursors to nausea/motion sickness.
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2.	 Complex Validation: Conducting a larger-scale study in a vehicle in 
motion to correlate our physiological data with subjective reports of 
motion sickness.

3.	 HMI Integration: Using the predictive model to trigger real-time, 
therapeutic interventions, such as adjusting airflow or modifying the 
vehicle’s drive style.
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