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ABSTRACT

The coming of autonomous vehicles promises a “passenger economy,” a vision
jeopardized by the challenge of kinetosis (motion sickness). Effective mitigation
requires non-invasive, predictive monitoring, yet current methods are impractical.
This paper presents a robust methodology that validates a synergistic fusion of
thermal and visible-light imaging as a reliable respiratory biomarker. Our system
employs a thermal camera to track temperature differentials at the nostrils and an RGB
camera to monitor thoraco-abdominal movements. We introduce a real-time signal
processing pipeline featuring: (1) dynamic, multi-modal region-of-interest tracking,
(2) independent signal “activity gating” to reject noise, and (3) a temporal peak-fusion
algorithm to compute a single, robust breathing rate. The primary contribution is
the demonstration of this system’s technical feasibility and resilience to real-world
failure modes. In a pilot study, we demonstrate high accuracy against a ground-truth
metric and, crucially, show the system maintains a stable output during facial and
torso occlusions that would cause single-modality systems to fail. This robust, non-
invasive system represents an important technical step toward truly human-centric
autonomous vehicles such as the C2CBridge Vehicle.
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INTRODUCTION

Autonomous vehicles are speculated to redefine future mobility, freeing
occupants from the task of driving and unlocking a new “passenger economy”
(Strategy Analytics, 2017). However, this transition from active driver to
passive passenger introduces a series of human-factor impediments. One of
the main ones being kinetosis (or motion sickness). The incidence of motion
sickness is expected to surge as passengers engage in non-driving-related
activities such as reading or screen-based work during their trips (Diels and
Bos, 2016).

This discomfort (kinetosis) arises from a “nauseogenic triad” inherent to
the autonomous nature of the vehicle:
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1. Sensory Conflict: The mismatch between a visually static interior and the
vestibular system’s sensation of motion.

2. Lack of Control: The passenger’s inability to physically control the
vehicle’s path and trajectory.

3. Anticipation Failure: The inability to predict the vehicle’s upcoming
movements (Reason and Brand, 1975).

Widespread passenger discomfort could threaten to undermine the value
proposition of autonomous vehicles. To try and mitigate this, one approach
could be for the vehicle to be able to detect the onset of distress before it
reaches the threshold of conscious nausea.

Current assessment methods are unsuitable for this task. Subjective scales
(e.g., M-SSQ) are retrospective and intrusive (Golding, 2016). Objective,
contact-based physiological sensors (such as ECG or EGG) are too invasive
for a consumer environment. This creates a critical need for a monitoring
paradigm that is simultaneously objective, non-invasive, predictive, and
robust.

This paper proposes a solution by validating respiration as a key predictive
biomarker. The physiological link between nausea and respiration is well-
established in research; the emetic (vomiting) reflex is a respiratory event
coordinated by the autonomic nervous system (Chang et al., 2010). Previous
studies indicate that changes in respiratory rate and stability often precede
the conscious perception of nausea (Al-Naji and Chahl, 2017).

Our contribution is a synergistic sensing-fusion system that non-
invasively measures respiration with high robustness. We fuse data from two
complementary, low-cost modalities:

1. Thermal Imaging: Monitoring temperature oscillations at the nostrils
caused by inhalation (cool air) and exhalation (warm air).

2. Visible-Light (RGB) Imaging: Monitoring subtle, periodic intensity
changes on the upper torso caused by thoraco-abdominal respiratory
movements.

By fusing these two signals (Figure 1), our system overcomes the individual
weaknesses of each modality, creating a reliable wellness biomarker to enable
pre-emptive HMI interventions.
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Figure 1: Pipeline of the synergistic fusion system.
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RELATED WORK
Contactless Respiration Monitoring

Thermal Imaging: Thermal cameras can detect the subtle temperature
differential between ambient air and inhaled/exhaled breath (See Figure 2).
This method has been successfully used to monitor respiratory rates in
various contexts (Al-Naji et al., 2019; 2023). Its primary advantage is its
effectiveness in variable and complete darkness. However, it is sensitive to
occlusions.
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Figure 2: Thermal changes in the nostril area .

Visible-Light (RGB) Imaging: Standard RGB cameras can track respiration
by measuring periodic movements, often by tracking optical flow or mean
pixel intensity of a chest or thorax area (D’mello-Johnson et al., 2017). While
low-cost, this method requires adequate ambient light and can be spoofed by
a passenger’s gross body movements. The Thorax (RGB) signal processing
pipeline is shown in the following figure:

Thorax (RGB) Signal Processing Pipeline (Final: 15.0 BPM)
Step 1: Raw Mean Grayscale Signal from Thorax ROI
I I I

-

Raw Signal

Mean Gray
[

ofr

2l I I I I I
0 10 20 30 40 50 60

Step 2: Bandpass Filtering (0.1 - 0.5 Hz)
T

Filtered Signal

ALk |
0 10 20 30 40

Step 3: Peak Detection on Filtered Signal
I

Filtered Signal
X Detected Breaths

Filtered Signal

.1[.]7 10 20 B‘D 40 50 60
Time (s)
Figure 3: (Top) The raw signal extracted from the chest ROI, showing significant noise
and baseline drift. (Middle) The same signal after applying a 2nd-order Butterworth
bandpass filter (0.1-0.5 Hz), which isolates the respiratory waveform. (Bottom) The
final peak detection step, where each “x” marks a detected breath on the filtered
signal, used to calculate the final BPM.
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Sensor Fusion for Robustness

Given the in-vehicle environment’s challenges, relying on a single modality is
not enough. The “synergetic use” of multiple sensing techniques offers a path
to greater robustness (Viola and Jones, 2001). Our work adapts this concept
specifically for kinetosis monitoring, where robustness is of uppermost
importance.

METHODOLOGY

Our system is implemented in MATLAB and built upon the described dual-
camera setup and a real-time processing pipeline:

{/ Cross-ModalROI Localizatiop I | Signal Extractiow ‘Robust Fusion & Rate Estimationa\
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Figure 4: Algorithmic pipeline.

Our system is a multi-component algorithm that transforms raw pixel data
into a respiratory rate, as shown in Figure 2. The Thermal camera captures a
raw thermal array (I,,,,) and a co-registered visible-light image (I, 1 ). The
RGB Camera captures a high-resolution color feed of the passenger’s upper

torso (Ipcp pxr )-

Component 1—Cross-Modal ROI Localization
We wuse a Cascade Object Detector on the visible-light feeds

(Ixgs-r>Ircspxr) to locate the passenger’s face. The Nostril ROI
(ROI,,,;) and (ROI,,,) are then defined geometrically. To prevent

jitter, the ROI,_ , position is smoothed using an EMA with a=0.25
A “coasting” logic maintains the ROIs for 15 frames if detection is temporarily
lost.

Component 2—Voxel-Based and Motion-Base Thermal/Visible Signal
Extraction

The respiratory signal is extracted from the thermal data by analyzing the
voxels (volume pixels) within the ROI, ;. We employ a Minima Selection
technique, as the inhalation of cool air provides the most robust signal.
S, (t)=min(I,, (x,%,¢))¥(x,y) € ROI, .. At the same time, the chest
respiratory signal is extracted by tracking Mean Intensity Modulation within
the ROI,,, . Asthe chestexpands and contracts, the mean grayscale value of the
region modulates periodically S, (¢) = mean (IGW (x, 9, t))V(x, y)eROI,,,,.
Component 4—Robust Fusion & Rate Estimation

The raw signals, S, and S, are processed in a final fusion module:
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1. Filtering: Both camera signals are passed through a 2nd-order, zero-
phase Butterworth bandpass filter (0,1 -0, 5 Hz) to isolate the respiratory
waveform.

2. Activity Gating: The system calculates the standard deviation of the
raw signal over a 5-second window. If the signal’s variance is below a
threshold(z, =0.5,7,, =0.3) it is considered “inactive” and is ignored by
the peak detector.

3. Temporal Peak-Matching: An algorithm is run on all active signals.
A temporal fusion algorithm then combines the peak lists. This logic
prioritizes thermal peaks but “claims” any matching visible-light peaks
within a 0.75s window. Unclaimed visible peaks are also counted, creating
a “best-of-both” signal.

4. Rate Calculation: The final fused respiratory rate is calculated from the
total fused breath count over the time window.

vis

METHODOLOGY

To validate the technical feasibility, accuracy, and robustness of our fusion
system, we conducted a two-part pilot study. The goal was to first, quantify
the system’s accuracy against a ground truth and to second, demonstrate the
algorithm’s resilience to common signal-loss scenarios that might occur in
shared mobility vehicles.

Pilot Validation of Accuracy: A ground-truth respiratory rate was
established by manual breath counting through a custom application. The
volunteer was instructed to breathe at three distinct paces for 60 seconds
each: Normal (Eupnea), Slow (Bradypnea), and Fast (Tachypnea). The mean
respiratory rate from our system was compared against the ground truth.
The results (summarized in Table 1) show a good degree of accuracy across
the physiological range, with a mean absolute error of less than 1 BPM.

Table 1: System accuracy validation. Comparison of the system’s
fused respiratory rate against the ground truth at three distinct,
controlled breathing paces.

Condition Ground Truth  Fused System  Absolute Error
Slow breathing 8.0 BPM 8.9 BPM 0.9 BPM
Normal breathing 14.0 BPM 14.7 BPM 0.7 BPM
Fast breathing 22.0 BPM 21.2 BPM 0.2 BPM

Demonstration of Fusion Robustness: To simulate real-world challenges
that might be encountered in the C2CBridge-Vehicle, we recorded a
continuous session where the subject performed two specific occlusion events
while breathing normally:

1. Facial Occlusion (5-10s): The subject placed a hand over their nose and
mouth, occluding the ROI, ..

2. Torso Occlusion (13-18s): The subject held a book over their upper
chest, occluding the ROI

chest *
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During the facial occlusion, the amplitude of the thermal signal dropped
below our specified 7,. The system correctly ignored this input and derived
the respiratory rate solely from the active chest signal. During the torso
occlusion, the visible light signal flattened. The system identified this and
relied exclusively on the clean thermal signal. The final fused output remained
stable and accurate throughout both events, demonstrating robustness
critical for a real-world deployment (Figure 5).

Robust Fusion (Fused BPM: 18.7)
T T T
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Thorax Signal (Visible)
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Thorax (Visible)
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Figure 5: Demonstration of the robust fusion algorithm.This graph shows the system’s
response to simulated occlusion events. The plot shows the filtered (solid) and raw
(dotted) signals for the nostril (blue) and thorax (red).

DISCUSSION

The primary contribution of this work is the technical validation of a system
for respiratory monitoring. Our pilot results confirm two points. First, the
system is accurate (Table 1). Second, and more importantly, the system is
robust (Figure 5).

In a dynamic in-vehicle environment, transient occlusions are inevitable.
A system relying on a single modality would suffer from frequent data
dropouts. Our activity-gated fusion logic overcomes this limitation, ensuring
a stable, continuous output.

We acknowledge the limitations of this pilot study. The validation was
performed in a static environment. However, as a proof-of-concept, these
results successfully demonstrate the technical feasibility and core advantages
of our fusion-based approach, establishing the necessary foundation for
future, larger-scale studies on kinetosis prediction.

CONCLUSION AND FUTURE WORK

This conference paper presents a non-invasive system for monitoring
passenger respiration by synergistically fusing thermal and RGB camera
data. Through a pilot study, we have demonstrated accuracy and more
importantly, its robustness to common occlusion scenarios.

Future work will focus on:

1. Predictive Modeling: Using this system to extract features of Respiratory
Rate Variability and train a machine learning classifier to detect
physiological precursors to nausea/motion sickness.
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2. Complex Validation: Conducting a larger-scale study in a vehicle in
motion to correlate our physiological data with subjective reports of
motion sickness.

3. HMI Integration: Using the predictive model to trigger real-time,
therapeutic interventions, such as adjusting airflow or modifying the
vehicle’s drive style.
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