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ABSTRACT

Effective real-time adaptation in human-robot collaboration requires significant testing
and validation to avoid compromising human safety and improve task efficiency.
Developing and validating such systems in real-world industrial environments is
resource intensive. This paper presents a high-fidelity simulation and visualisation
platform for shared robotic workspaces that supports both synthetic data generation
and digital twin operation in Unity 3D. The platform models and visualises human
body movement and gaze behaviour, enabling the representation of body movement
and visual attention during collaborative manufacturing tasks. Using procedurally
generated scenarios, the system supports controlled and repeatable experimentation
for the development and evaluation of real-time adaptation strategies. When integrated
with real sensor and eye-tracking data, the platform operates as a digital twin,
allowing real-time mirroring, monitoring, and analysis of human- robot interactions
under operational conditions. By enabling both offline simulation and online system
integration, the platform facilitates rapid prototyping and systematic assessment of
real-time adaptation approaches, helping bridge the gap between theoretical methods
and practical deployment in intelligent human-robot collaborative systems.
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INTRODUCTION

Human-robot collaboration (HRC) requires continuous mutual adaptation,
as both human and robot actions affect task progress, safety, and efficiency.
Real-time adaptation is therefore essential: robot motions, interaction
timing, and system feedback must adjust dynamically in response to changes
in task state and human behaviour (Li et al., 2023). Effective adaptive
systems simultaneously optimise robot performance and support human
operators, modulating guidance, information delivery, or interventions to
maintain coordination, reduce cognitive load, and enhance task fluency. By
responding to human behaviour while shaping the collaborative interaction,
adaptation mechanisms enable more robust, efficient, and natural shared
control, underscoring their central role in intelligent HRC design.

Training and evaluating adaptive collaboration strategies in real-world
environments is resource intensive and difficult to scale. Physical experiments
require substantial time and cost, including participant recruitment, safety
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management, and repeated trials to capture variability in human behaviour
and system responses. These constraints limit the exploration of alternative
strategies, rare events, and edge cases that are critical for robust system design.
Simulation therefore plays a central role in the development and validation
of real-time adaptive systems prior to deployment. Offline simulation enables
controlled evaluation of adaptive strategies without physical hardware, while
online simulation supports real-time interaction by synchronising virtual and
physical systems.

However, existing simulation environments focus primarily on robot
control or human body movement (Grushko et al., 2021), offering limited
support for studying adaptive interaction mechanisms that depend on
integrated embodied movement and visual attention. This motivates the need
for simulation frameworks that explicitly model these human factors while
supporting both controlled offline experimentation and real-time integration
with physical systems.

This paper presents a high-fidelity simulation and visualisation platform
for HRC that supports both offline simulation and real-time digital twin
operation. The platform models human body movement and visual attention
within shared robotic workspaces using predefined scenarios, enabling
realistic representation of human physical state during collaborative tasks.

The remainder of this paper reviews related work in simulation-based
HRC, presents the system architecture and digital twin implementation, and
details the human behaviour modelling approach and adaptation interface.
Representative use case scenarios are then demonstrated, followed by a
discussion of limitations and implications. The paper concludes with a
summary of contributions and directions for future work.

RELATED WORK

Research in HRC has explored numerous approaches aimed at improving
safety, efficiency, and coordination in shared workspaces. Many studies focus
on robot-centric adaptation (Zhanget al.,2022; Suresh et al., 2024), including
trajectory replanning (Grushko et al., 2021), speed modulation (Askin and
Bitsch,2023), and collision avoidance based on human proximity or predicted
motion (Liu and Wang, 2021). While these approaches improve physical
safety, they often treat human behaviour as a reactive element, limiting their
ability to support context-aware adaptation during collaboration.

Interactive communication and coordination mechanisms in HRC are
being investigated through visual, auditory, and haptic modalities to convey
robot intent, guide task progress, or improve mutual understanding (Li et al.,
2023). Recent work investigates adaptive and learning-based approaches for
determining when and how nudges and other notifications that influence
human behaviour should be delivered (Yang et al., 2022; Nassiuma et al.,
2024). However, the development of these systems would benefit by
simulation environments that include realistic models of human response
and engagement.

Simulation has emerged as a key tool for studying HRC due to the cost,
safety,and scalability limitations of real-world experimentation (Cimino et al.,
2024; Baratta etal.,2025). Virtual environments enable controlled evaluation
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of interaction strategies across a wide range of scenarios (Arntz, Eimler
and Hoppe, 2021). Several frameworks leverage physics-based simulation
(Weistroffer et al., 2022) and digital twins to model collaborative assembly
tasks (Cimino et al., 2024), allowing researchers to test robot behaviours
under varying human positions and task conditions.

Existing approaches range from scripted animations and motion capture
replay to probabilistic and data-driven human motion models (Xia et al.,
2017). These techniques are commonly used to predict human trajectories or
estimate occupancy regions for safety planning (Pereira and Althoff, 2017).
However, many models focus primarily on gross body motion and /or eye
tracking but don’t merge the two to form an overarching understanding that
could provide more insight for context adaptation.

Some studies incorporate stochastic or performance-based variability to
represent differences across users and execution conditions (Xia et al., 2026).
While this improves realism, the resulting human models are often decoupled
from interaction mechanisms such as notifications, warnings, or guidance
systems. As a result, simulations may fail to capture how human behaviour
changes in response to system-generated information.

Simulation frameworksfor HRChavebeenshowcased tomodel bothhumans
and robots as autonomous agents operating within a shared environment
(Antakli et al., 2019; Buerkle et al., 2021). The approach emphasises task-
level coordination and workflow optimization, demonstrating how agent-
based modelling can be used to evaluate collaborative assembly processes.
While effective for analysing system-level interactions and task allocation,
its focus isn’t on reactionary aspects of human behaviour related to virtual
information.

This paper builds on prior simulation-based HRC research by observing
how human behaviour changes in response to adaptively generated
information. Changes in body movement and visual attention are analysed
and used to inform the adaptive framework with the bid of improving safety
and efficiency of the

SYSTEM OVERVIEW
System Architecture and Digital Twin Environment

The system architecture adopts a modular and layered design to support the
development, simulation, and validation of real-time adaptive human-robot
collaboration. The architecture integrates multimodal human sensing, digital
twin simulation, human behaviour modelling, and interaction management
within a unified framework implemented in Unity 3D as shown in Figure 1.

At the physical detection layer, human motion is captured using a multi-
camera ZED stereo setup that provides real-time full-body skeletal tracking,
including joint positions and orientations. Visual attention and head
pose are acquired through a HoloLens 2 headset using the Mixed Reality
Toolkit (MRTK3), providing gaze direction and fixation estimates within
the workspace. These sensing streams are fused into a unified human state
representation within Unity, enabling a consistent description of human
posture, movement dynamics, and visual attention. While the current
implementation focuses on motion and gaze, the architecture provides
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provisions for integrating additional physiological sensing modalities, such
as electromyography (EMG) or electroencephalography (EEG), through
standardized data interfaces.
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Figure 1: System architecture: a combination of physical sensors monitoring the
physical environment (human, objects and robot). A digital twin interface run and
adaptation architecture run via unity 3D.

The digital twin layer serves as a central integration hub within the
simulation architecture. It contains synchronised and kinematically consistent
virtual replicas of the human, the UR10e robot, and the shared workspace
within the Unity 3D environment. Human motion data from the tracking
pipeline are retargeted to an articulated humanoid avatar via a calibrated
skeletal mapping, preserving joint hierarchy, segment lengths, and joint limit
constraints to ensure physically plausible pose reconstruction.

The UR10e is modelled as a 6-DoF serial manipulator whose joint
states are governed by the virtual controller: joint positions, velocities, and
accelerations are generated in simulation from task-level commands using
inverse kinematics and time-parameterised trajectory generators. These
joint-space profiles are streamed to the physical robot, which also feeds back
measured joint states to close the synchronisation loop between the virtual
and physical instances. In this way, the robot controller is embedded as one
module in a broader interaction pipeline, where human state estimation,
environment representation, and adaptation logic are tightly integrated with
the digital twin rather than treated as isolated subsystems.

The virtual data layer incorporates avatar control signals derived from
sensor inputs and computational models, which are refined to ensure accurate
representation of human actions in the virtual environment. Additionally,
this layer generates visual attention metrics and body tracking data, enabling
precise monitoring of gaze direction and physical posture. These processed
outputs are transmitted to the simulated avatar, facilitating realistic execution
of virtual tasks within the digital twin framework.

The interaction and adaptation layer implements a bidirectional control
and communication loop between the human operator and the HRC system,



924 Nassiuma et al.

operating on a fused representation of human and robot state. It treats the
HoloLens 2 as both a sensing endpoint and an interaction terminal: head- and
eye-gaze measurements are streamed into the state estimation pipeline, while
context-dependent feedback is sent back as rendered holographic overlays
and spatialised audio cues. The fused human-robot state is streamed to the
adaptive modules, which can execute rule- based or learning-based policies
to trigger interaction responses or update robot motion parameters.

In simulation, adaptation decisions are computed against procedurally
generated or replayed interaction scenarios, whereas during live operation
they are computed online from continuously streamed sensor data originating
in the physical workspace. This separation of execution context allows
the same adaptation logic and interfaces to be verified under controlled,
repeatable conditions and then deployed for real-time use on the physical
system without modification to the underlying decision mechanisms.

Human Behaviour Model

To support scalable experimentation beyond real-time data capture, the
platform incorporates a generative human behaviour model capable of
synthesizing realistic body movement and visual attention. The model
is grounded in empirical human data collected, ensuring that generated
behaviours remain consistent with observed human motion patterns as
shown in Figure 2.
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Figure 2: The real time data of the human captured by the devices and analysed and
this feeds into the synthetic human database as well as the controlling of the digital
human. In offline mode the synthetic database runs the human avatar.

Human behaviour within the platform is represented through a
hierarchical model that captures both body movement and visual attention
across multiple levels of abstraction. Low-level kinematic variables, including
joint positions, velocities, and accelerations, describe physically plausible
motion, while higher- level temporal structure encodes task-relevant phases
and coordination patterns. This unified representation enables consistent
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modelling of human behaviour during real-time digital twin operation and
offline simulation.

In real-time operation, body movement is captured using a ZED stereo
camera setup with Media Pipe pose estimation, extracting 3D skeletal joint
positions, velocities, accelerations, and jerk metrics from video streams. These
data are filtered and retargeted to a Unity humanoid avatar, preserving
kinematic constraints and temporal dynamics. Concurrently, visual attention
is acquired via HoloLens 2 with MRTK3 eye-tracking, processing raw gaze
data into fixation durations, saccade trajectories, and area of interest dwell
time metrics. The fused body-gaze streams drive an articulated digital avatar
that mirrors the human operator’s posture, motion dynamics, and visual
focus within the digital twin workspace

For offline simulation, the platform independently employs two
complementary generative methods with distinct roles. First, bootstrap
resampling is applied to recorded pose and gaze trajectories to generate
controlled variations of observed behaviour. This method preserves task
structure and coordination patterns while enabling systematic manipulation
of movement speed, trajectory shape, fixation duration, and attention
transitions, supporting robustness testing and scenario exploration. Second,
a variational autoencoder (VAE) trained on aggregated pose—gaze sequences
are used to synthesise novel trajectories by sampling from a learned latent
space. This enables generation of behaviours not explicitly observed in
the dataset, capturing inter-subject variability in movement style and gaze
strategies while maintaining anatomical and task-level plausibility.

In simulation mode without live eye tracking, synthesized gaze vectors are
mapped to head orientation using a gaze-to-head coupling model to ensure
anatomical consistency between eye position and head pose. Together, the
bootstrapped and VAE-generated models provide complementary mechanisms
for reproducing observed behaviour and exploring novel interaction patterns,
forming a unified behavioural foundation for adaptive HRC experimentation.

Adaptation Framework

The platform exposes a modular adaptation interface that enables external
adaptation strategies to observe and influence the collaborative environment
in a structured manner. As illustrated in Figure 3, the adaptation process
operates on an interaction state that integrates human motion state, visual
attention state, and robot execution state. This abstraction decouples
adaptation logic from low-level sensing and ensures that identical decision-
making mechanisms can be applied in both offline simulation and real-time
digital twin operation.

Adaptation strategies are organised into three complementary classes. Rule-
based adaptation encodes deterministic constraints and heuristics, such as
safety thresholds, temporal conditions, and context-specific rules, providing
predictable and verifiable system behaviour. Learning-based adaptation
operates in an unsupervised or data-driven manner, leveraging latent state
representations to discover behavioural patterns, cluster interaction states,
or learn adaptive policies from data. Hybrid strategies combine these
approaches by constraining learned behaviours with explicit rules or using
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learned triggers to activate deterministic responses. This separation allows
systematic comparison and integration of different adaptation paradigms
within the same framework.

Adaptation Strategies

Human-Oriented Adaptation

Rule-Based Learning-Based Hybrid « Visual Cues
Adaptation Adaptation Adaptation « Audio Feedback
Interaction State —— | | (Unsupenvised / Data-Driven) | | —————

» Safety Thresholds * Rule-C
= Latent State Discovery Learning

« Human Motion State || | * Temporal Heuristics i ; )
« Visual Attention State = Context Conditions * Behavior Clustering * Learned Triggers
 Robot Execution State = Policy Learning

Robot-Oriented Adaptation
 Motion Scaling
« Trajectory Modification
» Timing Adjustment

Figure 3: Schematic of the modular adaptation interface, showing state observations,
parallel rule-based and unsupervised adaptation paths, and action outputs for robot
adjustment and human information delivery.

Outputs from a chosen adaptation strategy determines the active response.
Adaptation actions are applied along two primary channels: human-oriented
adaptation,suchasvisual oraudio feedback delivered through the HoloLens,and
robot-oriented adaptation, including motion scaling, trajectory modification,
or timing adjustment. By supporting both simulation-based evaluation and
real-time execution using the same interface, the platform enables consistent
development, testing, and deployment of adaptive HRC strategies.

Use Case Scenarios

The framework supports application areas that advance both the analysis
of human behaviour in HRC and the development of adaptive interaction
strategies. One application area focuses on systematically characterising how
operators’ body movements and visual attention respond to context-adaptive
information delivered through the AR interface. The platform enables
quantitative evaluation of gaze deviations from task-critical Areas of Interest
(AOIs) and the effectiveness of automatically triggered visual or auditory
cues. Comparative analysis of cue modalities can reveal their impact on
proximity corrections, task resumption latency, and attention allocation. By
modelling individual differences in baseline movement and visual patterns,
the framework informs the design of personalised adaptation thresholds that
optimise cue timing, salience, and modality for diverse operators.

A second application area examines human responses to robot motion
anomalies, including path deviations or unexpected hesitations, to inform
reassurance strategy design. The system can quantify correlations between
error severity, hesitation duration, and gaze reallocation toward the robot
end-effector. AR overlays, such as trajectory previews, are evaluated for
their effectiveness in reducing operator withdrawal distance and restoring
task engagement. Procedural behavioural variation in simulation supports
counterfactual analysis,enabling systematic testing of multi-modal reassurance
sequences that combine visual, audio, and motion synchronisation cues.
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Across both application domains, the platform’s integrated simulation
and digital twin capabilities establish causal relationships between system
actions, human responses, and collaborative performance metrics, providing
a robust foundation for iterative refinement of context-aware HRC policies.

DISCUSSION AND CONCLUSION

The proposed platform provides a scalable framework for developing and
evaluating adaptive HRC strategies. By integrating high-fidelity simulation
with real-time digital twin operation, it enables systematic study of human
responses to variations in robot motion, interaction cues, and error recovery
mechanisms. The platform captures body movement, gaze behaviour, and
task engagement, supporting iterative design and testing of adaptation
strategies prior to real-world deployment. Its dual simulation—digital twin
capability allows offline scenario generation for policy training and online
mirroring for real-time adaptation, reducing reliance on resource-intensive
physical trials and enhancing safety.

Hierarchical human behaviour modelling abstracts low-level sensory data
into structured interaction states suitable for rule-based, learning-based, or
hybrid adaptation strategies. These states inform robot motion adjustments or
human- directed feedback, enabling flexible and method-agnostic adaptation.
The modular design supports diverse robots, sensors, and human-machine
interfaces, allowing exploration of application areas such as responses to
adaptive cues, reactions to robot motion anomalies, and evaluation of multi-
modal strategies. While the current work focuses on physical and perceptual
aspects of human behaviour, this provides a foundation for future extensions
which may incorporate higher-level task reasoning, intention modelling.

The platform unifies human behaviour modelling, adaptation strategy
testing, and digital twin operation, providing a repeatable and controlled
environment to refine context-aware HRC policies and improve collaborative
efficiency, safety, and fluency in industrial settings.
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